Skip to main content

Portfolio Decision Technology for Designing Optimal Syndemic Management Strategies

  • Conference paper
  • First Online:
Complex Systems Design & Management Asia

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 426))

Abstract

Cholera is an infectious disease responsible for roughly 3–5 million morbidities and 100,000–120,000 mortalities every year at the global scale. Frequent cholera outbreaks in the recent history suggest unresolved inefficiency issues with regards to cholera prevention and intervention strategies. Guidelines of the World Health Organizations (WHO) advise country governments facing threats of cholera epidemics to prevent and control potential outbreaks by developing effective sanitation, proper waste management strategies and vaccination campaigns. These controls do not envision any focus on environmental determinants of cholera outbreaks. Failing to select the most appropriate prevention and intervention strategies at the health management scale based on public health, environmental, and social determinants is the fundamental cause for the low effectiveness of cholera outbreak containment strategies. This study targets this inefficiency via the creation of a model-based technology that detects the optimal combination of outbreak controls which minimize the number of cases at the system scale. As a case study we consider cholera but the model can be applied to any syndemic and/or complex diseases affected by natural and human systems. The technology is based on the integration of an epidemiology model that processes public health information and predicts population dynamics during the epidemic, an environmental model that predicts environmental fluxes (i.e., hydrologic fluxes) and a mobility model that predicts human fluxes. Results from the physical based model feeds a Portfolio Decision Model (PDM) that is composed by a Multi-Criteria Disease Analysis (MCDA) and a Pareto optimization model. The MCDA model is used for the static evaluation of the feasible controls at the smallest community scale; the Pareto optimization detects the most appropriate control strategy rather than one single control alternative. Preliminary applications of the model applied to the great Kolkata ecosystem shows an average 35 % decrease in incidence for the portfolio versus the monocontrol scenario. Acknowledging spatial sensitivities in the epidemiological dynamics, PDM benefits public health management concerned with multiple populations with heterogeneous dependencies occurring simultaneously. PDM considers public health management scales and optimizes the distribution of economic resources for minimizing the risk of infection at the system scale. A major innovation is constituted by the explicit consideration of environmental dynamics, global sensitivity and uncertainty analysis, and MCDA that is particularly relevant for bringing together biophysical factors and stakeholder preferences in the decision making process. The model can be extended from one disease to syndemics linked together by common socio-environmental drivers or the structure of the natural-human systems responsible for their spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chu-Agor, M.L., Muñoz-Carpena, R., Kiker, G.A., Emanuelsson, A., Linkov, I.: Exploring sea level rise vulnerability of coastal habitats through global sensitivity and uncertainty analysis. Environ. Model Softw. 26, 593–604 (2011)

    Article  Google Scholar 

  2. Chu-Agor, M.L., Muñoz-Carpena, R., Kiker, G.A., Aiello-Lammens, M., Akçakaya, R., et al.: Simulating the fate of Florida Snowy Plovers with sea level rise: exploring potential population management outcomes with a global uncertainty and sensitivity analysis perspective. Ecol. Model. (2012)

    Google Scholar 

  3. Convertino, M., Kiker, G.A., Muñoz-Carpena, R., Fischer, R.A., Linkov, I.: Scale- and resolution-invariance of suitable geographic range for shorebird metapopulations. Ecol. Complex. (2011). doi:10.1016/j.ecocom.2011.07.007

    Google Scholar 

  4. Convertino, M., Kiker, G.A., Chu-Agor, M.L., Munoz-Carpena, R., Martinez, C.J., et al.: Integrated Modeling to Mitigate Climate Change Risk due to Sea Level Rise of Imperiled Shorebirds on Florida Coastal Military Communitys, NATO Book. In: Linkov, I., Bridges, T. (eds.) Climate Change: Global Change and Local Adaptation (2011)

    Google Scholar 

  5. Convertino M., Muñoz-Carpena R., Kiker G.A., Chu-Agor M.L., Fischer R.A., et al.: Epistemic uncertainty in predicted species distributions: models and space-time gaps of biogeographical data. Ecol. Model. (2011)

    Google Scholar 

  6. Convertino, M., Chu-Agor, M.L., Fischer, R.A., Kiker, G.A., Munoz-Carpena, R., et al.: Coastline fractality as fingerprint of scale-free shorebird patch-size fluctuations due to climate change. Ecol. Process. (2012)

    Google Scholar 

  7. Convertino, M., Valverde Jr, L.J.: Portfolio decision analysis framework for value-focused ecosystem management. PLoS One 8(6), e65056 (2013). doi:10.1371/journal.pone.0065056

    Article  Google Scholar 

  8. Convertino, M., Chu-Agor, M.L., Baker, K., Linkov, I., Munoz-Carpena, R.: Untangling drivers of species distribution models: global sensitivity and uncertainty analysis of MaxEnt. Environ. Model. Softw. (2014)

    Google Scholar 

  9. Convertino, M., Liang, S., Arabi, M., Morris, S.: Unveiling the spatio-temporal cholera outbreak in cameroon: a model for public health engineering. BMC Infect. Dis. (2015) (in press)

    Google Scholar 

  10. Haldane, A.G., May, R.M.: Systemic risk in banking ecosystems. Nature 469, 351–355 (2011). doi:10.1038/nature09659

    Article  Google Scholar 

  11. Kasprzyk, J.R., Reed, P.M., Characklis, G.W., Kirsch, B.R.: Many-objective de Novo water supply portfolio planning under deep uncertainty. Environ. Model Softw. 34, 87e104 (2012)

    Article  Google Scholar 

  12. Linkov, I., Moberg, E.: Multi Criteria Decision Analysis: Environmental Applications and Case Studies. CRC Press (2012)

    Google Scholar 

  13. Salo, A., Keisler, J., Morton, A.: Portfolio Decision Analysis, Improved Methods for Resource Allocation, 1st edn., XV, p. 409 (2011)

    Google Scholar 

  14. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., et al.: Global Sensitivity Analysis: The Primer. Wiley (2004)

    Google Scholar 

  15. You, Y.A., Ali, M., Kanungo, S., Sah, B., Manna, B., et al.: risk map of cholera infection for vaccine deployment: the eastern Kolkata case. PLoS One 8(8), e71173 (2013). doi:10.1371/journal.pone.0071173

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Convertino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Convertino, M., Liu, Y. (2016). Portfolio Decision Technology for Designing Optimal Syndemic Management Strategies. In: Cardin, MA., Fong, S., Krob, D., Lui, P., Tan, Y. (eds) Complex Systems Design & Management Asia. Advances in Intelligent Systems and Computing, vol 426. Springer, Cham. https://doi.org/10.1007/978-3-319-29643-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29643-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29642-5

  • Online ISBN: 978-3-319-29643-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics