Skip to main content

Non-Oxide Materials (Nitrides, Chalcogenides, and Arsenides)

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production
  • 4307 Accesses

Abstract

Non-oxide semiconductors are often studied and used for photoelectrochemical solar fuel production. Since the anions and cations of crystals can be selected for non-oxide semiconductor materials, the controllability of the conduction and valence band edge potentials, especially that of the valence band edge, is better than that for oxide semiconductors, which is an interesting characteristic of photoelectrochemical electrodes. Non-oxide semiconductors, especially those made of group VI semiconductor material and the III–V compound semiconductor materials formed of group III and group V elements, are used for semiconductor devices like transistors, light-emitting diodes (LEDs), and laser diodes (LDs) due to their extremely good material qualities and controllable p- and n-type polarities and because structurally different materials can be combined. In addition, since non-oxide materials such as single crystals are put to practical applications, they can also be used as the photochemical materials discussed here. Some non-oxide monolithic materials can split water; thus, it is one of the most applicable materials for photoelectrochemical reactions. Most non-oxide materials are, however, not stable in aqueous acidic and/or basic solutions. It is therefore important to protect these materials from dissolution, especially in photoelectrochemical water-splitting applications. This section mainly discusses the photoelectrochemical properties of non-oxide single crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195. doi:10.1038/ncomms3195

    Article  Google Scholar 

  • Abruna HD, Bard AJ (1981) Semiconductor electrodes. 40. Photoassisted hydrogen evolution at poly(benzyl viologen)-coated p-type silicon electrodes. J Am Chem Soc 103(23):6898–6901. doi:10.1021/ja00413a021

    Article  Google Scholar 

  • Allongue P, Blonkowski S (1991) Corrosion of III-V compounds; a comparative study of GaAs and InP: Part I. Electrochemical characterization based on Tafel plot measurements. J Electroanal Chem Interf Electrochem 316(1–2):57–77. doi:10.1016/0022-0728(91)87036-4, http://dx.doi.org

    Article  Google Scholar 

  • Aryal K, Pantha BN, Li J, Lin JY, Jiang HX (2010) Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells. Appl Phys Lett 96(5):052110. doi:10.1063/1.3304786, http://dx.doi.org

    Article  Google Scholar 

  • Beach JD, Collins RT, Turner JA (2003) Band-edge potentials of n-type and p-type GaN. J Electrochem Soc 150(7):A899–A904. doi:10.1149/1.1577542

    Article  Google Scholar 

  • Boddy PJ, Brattain WH (1963) The distribution of potential at the germanium aqueous electrolyte interface. J Electrochem Soc 110(6):570–576. doi:10.1149/1.2425816

    Article  Google Scholar 

  • Bonke SA, Wiechen M, MacFarlane DR, Spiccia L (2015) Renewable fuels from concentrated solar power: towards practical artificial photosynthesis. Energ Environ Sci 8(9):2791–2796. doi:10.1039/C5EE02214B

    Article  Google Scholar 

  • Brattain WH, Boddy PJ (1962) The interface between germanium and a purified neutral electrolyte. J Electrochem Soc 109(7):574–582. doi:10.1149/1.2425500

    Article  Google Scholar 

  • Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24(18):3659–3666. doi:10.1021/cm302533s

    Article  Google Scholar 

  • Contractor AQ, Bockris JOM (1984) Investigation of a protective conducting silica film on n-silicon. Electrochim Acta 29(10):1427–1434. doi:10.1016/0013-4686(84)87022-X, http://dx.doi.org

    Article  Google Scholar 

  • Dasgupta NP, Liu C, Andrews S, Prinz FB, Yang P (2013) Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J Am Chem Soc 135(35):12932–12935. doi:10.1021/ja405680p

    Article  Google Scholar 

  • Dominey RN, Lewis NS, Bruce JA, Bookbinder DC, Wrighton MS (1982) Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes. J Am Chem Soc 104(2):467–482. doi:10.1021/ja00366a016

    Article  Google Scholar 

  • Ellis AB, Kaiser SW, Wrighton MS (1976) Optical to electrical energy conversion. Characterization of cadmium sulfide and cadmium selenide based photoelectrochemical cells. J Am Chem Soc 98(22):6855–6866. doi:10.1021/ja00438a016

    Article  Google Scholar 

  • Ellis AB, Bolts JM, Kaiser SW, Wrighton MS (1977a) Study of n-type gallium arsenide- and gallium phosphide-based photoelectrochemical cells. Stabilization by kinetic control and conversion of optical energy to electricity. J Am Chem Soc 99(9):2848–2854. doi:10.1021/ja00451a002

    Article  Google Scholar 

  • Ellis AB, Bolts JM, Wrighton MS (1977b) Characterization of n-type semiconducting indium phosphide photoelectrodes: stabilization to photoanodic dissolution in aqueous solutions of telluride and ditelluride ions. J Electrochem Soc 124(10):1603–1607. doi:10.1149/1.2133118

    Article  Google Scholar 

  • Ellis AB, Kaiser SW, Bolts JM, Wrighton MS (1977c) Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes. J Am Chem Soc 99(9):2839–2848. doi:10.1021/ja00451a001

    Article  Google Scholar 

  • Frank AJ, Honda K (1982) Visible-light-induced water cleavage and stabilization of n-type cadmium sulfide to photocorrosion with surface-attached polypyrrole-catalyst coating. J Phys Chem 86(11):1933–1935. doi:10.1021/j100208a005

    Article  Google Scholar 

  • Frese KW, Madou MJ, Morrison SR (1980) Investigation of photoelectrochemical corrosion of semiconductors. J Phys Chem 84(24):3172–3178. doi:10.1021/j100461a008

    Article  Google Scholar 

  • Frese KW, Madou MJ, Morrison SR (1981a) Investigation of photoelectrochemical corrosion of semiconductors: II. Kinetic analysis of corrosion‐competition reactions on “n-GaAS”. J Electrochem Soc 128(7):1527–1531. doi:10.1149/1.2127676

    Google Scholar 

  • Frese KW, Madou MJ, Morrison SR (1981b) Investigation of photoelectrochemical corrosion of semiconductors: III. Effects of metal layer on stability of GaAs. J Electrochem Soc 128(9):1939–1943. doi:10.1149/1.2127770

    Article  Google Scholar 

  • Fujii K, Ohkawa K (2005) Photoelectrochemical properties of p-type GaN in comparison with n-type GaN. Jpn J Appl Phys 44(7L):L909

    Article  Google Scholar 

  • Fujii K, Ohkawa K (2006) Bias-assisted H2 Gas generation in HCl and KOH solutions using n-type GaN photoelectrode. J Electrochem Soc 153(3):A468–A471. doi:10.1149/1.2161572

    Article  Google Scholar 

  • Fujii K, Karasawa T, Ohkawa K (2005) Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation. Jpn J Appl Phys 44(4L):L543

    Article  Google Scholar 

  • Fujii K, Ito T, Ono M, Iwaki Y, Yao T, Ohkawa K (2007a) Investigation of surface morphology of n-type GaN after photoelectrochemical reaction in various solutions for H2 gas generation. Phys Status Solidi C 4(7):2650–2653. doi:10.1002/pssc.200674917

    Article  Google Scholar 

  • Fujii K, Iwaki Y, Masui H, Baker TJ, Iza M, Sato H, Kaeding J, Yao T, Speck JS, DenBaars SP, Nakamura S, Ohkawa K (2007b) Photoelectrochemical properties of nonpolar and semipolar GaN. Jpn J Appl Phys 46(10R):6573

    Article  Google Scholar 

  • Fujii K, Ono M, Ito T, Iwaki Y, Hirako A, Ohkawa K (2007c) Band-edge energies and photoelectrochemical properties of n-type Al x Ga1 − x N and in y Ga1 − y N alloys. J Electrochem Soc 154(2):B175–B179. doi:10.1149/1.2402104

    Article  Google Scholar 

  • Fujii K, Koike K, Atsumi M, Goto T, Itoh T, Yao T (2011a) Time dependence of water-reducing photocurrent with change of the characteristics of n-type GaN photo-illuminated working electrodes. Phys Status Solidi C 8(7-8):2457–2459. doi:10.1002/pssc.201000937

    Article  Google Scholar 

  • Fujii K, Nakamura S, Yokojima S, Goto T, Yao T, Sugiyama M, Nakano Y (2011b) Photoelectrochemical properties of in x Ga1–x N/GaN multiquantum well structures in depletion layers. J Phys Chem C 115(50):25165–25169

    Article  Google Scholar 

  • Fujii K, Koike K, Atsumi M, Goto T, Itoh T, Yao T (2012) Photoluminescence changes in n-type GaN samples after photoelectrochemical treatment. Phys Status Solidi C 9(3-4):715–718. doi:10.1002/pssc.201100310

    Article  Google Scholar 

  • Fujii K, Nakamura S, Sugiyama M, Watanabe K, Bagheri B, Nakano Y (2013) Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int J Hydrog Energy 38(34):14424–14432. doi:10.1016/j.ijhydene.2013.07.010, http://dx.doi.org

    Article  Google Scholar 

  • Gerischer H (1977) On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem Interf Electrochem 82(1–2):133–143. doi:10.1016/S0022-0728(77)80253-2, http://dx.doi.org

    Article  Google Scholar 

  • Gomes WP, Cardon F (1982) Electron energy levels in semiconductor electrochemistry. Prog Surf Sci 12(2):155–215. doi:10.1016/0079-6816(82)90002-8, http://dx.doi.org

    Article  Google Scholar 

  • Goossens A, Schoonman J (1992) An impedance study of boron phosphide semiconductor electrodes. J Electrochem Soc 139(3):893–900. doi:10.1149/1.2069321

    Article  Google Scholar 

  • Grimes CA, Varghese OK, Ranjan S (2007) Light, water, hydrogen—the solar generation of hydrogen by water photoelectrolysis -. Springer, New York

    Google Scholar 

  • Harten HU, Memming R (1962) Potential distribution at the germanium electrolyte interface. Phys Lett 3(2):95–96. doi:10.1016/0031-9163(62)90020-3, http://dx.doi.org

    Article  Google Scholar 

  • Hayashi T, Deura M, Ohkawa K (2012) High stability and efficiency of GaN photocatalyst for hydrogen generation from water. Jpn J Appl Phys 51:112601. doi:10.1143/jjap.51.112601

    Article  Google Scholar 

  • Heller A, Vadimsky RG (1981) Efficient solar to chemical conversion: 12% efficient photoassisted electrolysis in the [p-type InP(Ru)]/HCl-KCl/Pt(Rh) cell. Phys Rev Lett 46(17):1153–1156

    Google Scholar 

  • Heller A, Aharon-Shalom E, Bonner WA, Miller B (1982) Hydrogen-evolving semiconductor photocathodes: nature of the junction and function of the platinum group metal catalyst. J Am Chem Soc 104(25):6942–6948. doi:10.1021/ja00389a010

    Article  Google Scholar 

  • Huygens IM, Strubbe K, Gomes WP (2000) Electrochemistry and photoetching of n-GaN. J Electrochem Soc 147(5):1797–1802. doi:10.1149/1.1393436

    Article  Google Scholar 

  • Inoue T, Watanabe T, Fujishima A, Ki H, Kohayakawa K (1977) Suppression of surface dissolution of CdS photoanode by reducing agents. J Electrochem Soc 124(5):719–722. doi:10.1149/1.2133392

    Article  Google Scholar 

  • Jacobsson TJ, Fjallstrom V, Sahlberg M, Edoff M, Edvinsson T (2013) A monolithic device for solar water splitting based on series interconnected thin film absorbers reaching over 10% solar-to-hydrogen efficiency. Energ Environ Sci 6(12):3676–3683. doi:10.1039/C3EE42519C

    Article  Google Scholar 

  • Kainthla RC, Zelenay B, Bockris JOM (1986) Protection of n-Si photoanode against photocorrosion in photoelectrochemical cell for water electrolysis. J Electrochem Soc 133(2):248–253. doi:10.1149/1.2108556

    Article  Google Scholar 

  • Kang J-H, Kim SH, Ebaid M, Lee JK, Ryu S-W (2014) Efficient photoelectrochemical water splitting by a doping-controlled GaN photoanode coated with NiO cocatalyst. Acta Mater 79:188–193. doi:10.1016/j.actamat.2014.07.032, http://dx.doi.org

    Article  Google Scholar 

  • Khader MM (1996) Surface arsenic enrichment of n-GaAs photoanodes in concentrated acidic chloride solutions. Langmuir 12(4):1056–1060. doi:10.1021/la940895r

    Article  Google Scholar 

  • Khader MM, Saleh MM (1999) Comparative study between the photoelectrochemical behaviors of metal-loaded n- and p-GaAs. Thin Solid Films 349(1–2):165–170. doi:10.1016/S0040-6090(99)00224-2, http://dx.doi.org

    Article  Google Scholar 

  • Khader MM, Nasser SA, Hannout MM, El-Dessouki MS (1993) Photoelectrochemical dissociation of water at copper-doped p-GaAs electrodes. Int J Hydrog Energy 18(11):921–924. doi:10.1016/0360-3199(93)90062-F, http://dx.doi.org

    Article  Google Scholar 

  • Khader MM, Hannout MM, El-Dessouki MS (1996) Catalytic effects for hydrogen photogeneration due to metallic deposition on P-GaAs. Int J Hydrog Energy 21(7):547–553. doi:10.1016/0360-3199(95)00118-2, http://dx.doi.org

    Article  Google Scholar 

  • Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427. doi:10.1126/science.280.5362.425

    Article  Google Scholar 

  • Kim SH, Ebaid M, Kang J-H, Ryu S-W (2014) Improved efficiency and stability of GaN photoanode in photoelectrochemical water splitting by NiO cocatalyst. Appl Surf Sci 305:638–641. doi:10.1016/j.apsusc.2014.03.151

    Article  Google Scholar 

  • Kocha SS, Turner JA, Nozik AJ (1994) Study of the Schottky barrier and determination of the energetic positions of band edges at the n- and p-type gallium indium phosphide electrode | electrolyte interface. J Electroanal Chem 367(1–2):27–30. doi:10.1016/0022-0728(93)03020-P, http://dx.doi.org

    Article  Google Scholar 

  • Kocha SS, Peterson MW, Arent DJ, Redwing JM, Tischler MA, Turner JA (1995) Electrochemical investigation of the gallium nitride-aqueous electrolyte interface. J Electrochem Soc 142(12):L238–L240. doi:10.1149/1.2048511

    Article  Google Scholar 

  • Koike K, Sato K, Fujii K, Goto T, Yao T (2010) Time variation of GaN photoelectrochemical reactions affected by light intensity and applied bias. Phys Status Solidi C 7(7-8):2221–2223. doi:10.1002/pssc.200983450

    Article  Google Scholar 

  • Koike K, Nakamura A, Sugiyama M, Nakano Y, Fujii K (2014) Surface stability of n-type GaN depending on carrier concentration and electrolytes under photoelectrochemical reactions. Phys Status Solidi C 11(3-4):821–823. doi:10.1002/pssc.201300466

    Article  Google Scholar 

  • Kraft A (2007) Doped diamond: a compact review on a new, versatile electrode material. Int J Electrochem Sci 2(5):355–385

    Google Scholar 

  • Leisch JE, Bhattacharya RN, Teeter G, Turner JA (2004) Preparation and characterization of Cu(In, Ga)(Se, S)2 thin films from electrodeposited precursors for hydrogen production. Sol Energy Mater Sol Cells 81(2):249–259. doi:10.1016/j.solmat.2003.11.006, http://dx.doi.org

    Article  Google Scholar 

  • Lewerenz HJ, Gerischer H, Lübke M (1984) Photoelectrochemistry of WSe2 electrodes: comparison of stepped and smooth surfaces. J Electrochem Soc 131(1):100–104. doi:10.1149/1.2115467

    Article  Google Scholar 

  • Li J, Lin JY, Jiang HX (2008) Direct hydrogen gas generation by using InGaN epilayers as working electrodes. Appl Phys Lett 93(16):162107. doi:10.1063/1.3006332, http://dx.doi.org

    Article  Google Scholar 

  • Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000) Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104(38):8920–8924. doi:10.1021/jp002083b

    Article  Google Scholar 

  • Lin Y, Kapadia R, Yang J, Zheng M, Chen K, Hettick M, Yin X, Battaglia C, Sharp ID, Ager JW, Javey A (2015) Role of TiO2 surface passivation on improving the performance of p-InP photocathodes. J Phys Chem C 119(5):2308–2313. doi:10.1021/jp5107313

    Google Scholar 

  • Luo W, Liu B, Li Z, Xie Z, Chen D, Zou Z, Zhang R (2008) Stable response to visible light of InGaN photoelectrodes. Appl Phys Lett 92(26):262110. doi:10.1063/1.2955828, http://dx.doi.org

    Article  Google Scholar 

  • May MM, Lewerenz H-J, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure. Nat Commun 6:8286. doi:10.1038/ncomms9286

    Article  Google Scholar 

  • McEvoy AJ, Etman M, Hemming M (1985) Interface charging and intercalations effects on d-band transition metal diselenide photoelectrodes. J Electroanal Chem Interf Electrochem 190(1–2):225–241. doi:10.1016/0022-0728(85)80089-9, http://dx.doi.org

    Article  Google Scholar 

  • Memming R (1969) Mechanism of the electrochemical reduction of persulfates and hydrogen peroxide. J Electrochem Soc 116(6):785–790. doi:10.1149/1.2412052

    Article  Google Scholar 

  • Memming R (2008) Semiconductor electrochemistry. John Wiley & Sons, Hoboken, NJ

    Google Scholar 

  • Memming R (2015) Semiconductor electrochemistry, 2nd edn. John Wiley & Sons Inc, Hoboken, NJ

    Google Scholar 

  • Memming R, Schwandt G (1966a) Anodic dissolution of silicon in hydrofluoric acid solutions. Surf Sci 4(2):109–124. doi:10.1016/0039-6028(66)90071-9, http://dx.doi.org

    Article  Google Scholar 

  • Memming R, Schwandt G (1966b) Potential distribution and formation of surface states at the silicon-electrolyte interface. Surf Sci 5(1):97–110. doi:10.1016/0039-6028(66)90052-5, http://dx.doi.org

    Article  Google Scholar 

  • Menezes S, Miller B (1983) Surface and redox reactions at GaAs in various electrolytes. J Electrochem Soc 130(2):517–523. doi:10.1149/1.2119742

    Article  Google Scholar 

  • Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108(1):1–35. doi:10.1016/S1010-6030(97)00118-4, http://dx.doi.org

    Article  Google Scholar 

  • Mukherjee J, Erickson B, Maldonado S (2010) Physicochemical and electrochemical properties of etched GaP(111)a and GaP(111)B surfaces. J Electrochem Soc 157(4):H487–H495. doi:10.1149/1.3314305

    Article  Google Scholar 

  • Nakamura S, Chichibu SF (2000) Introduction to nitride semiconductor blue lasers and light emitting diodes. CRC Press, Boca Raton

    Google Scholar 

  • Nakamura A, Fujii K, Sugiyama M, Nakano Y (2014) A nitride based polarization-engineered photocathode for water splitting without a p-type semiconductor. Phys Chem Chem Phys 16(29):15326–15330. doi:10.1039/C4CP01599A

    Article  Google Scholar 

  • Nakamura A, Ota Y, Koike K, Hidaka Y, Nishioka K, Sugiyama M, Fujii K (2015) A 24.4% solar to hydrogen energy conversion efficiency by combining concentrator photovoltaic modules and electrochemical cells. Appl Phys Express 8(10):107101. doi:10.7567/apex.8.107101

    Article  Google Scholar 

  • Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y (2014) High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed 53(3):871–874. doi:10.1002/anie.201308657

    Article  Google Scholar 

  • Nakato Y, Tsumura A, Tsubomura H (1982) Efficient photo-electrochemical conversion of solar-energy with normal-type silicon semiconductor electrodes surface-doped with IIIA-group elements. Chem Lett 7:1071–1074. doi:10.1246/cl.1982.1071

    Article  Google Scholar 

  • Nakato Y, Ueda K, Yano H, Tsubomura H (1988) Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion. J Phys Chem 92(8):2316–2324. doi:10.1021/j100319a043

    Article  Google Scholar 

  • Nozik AJ, Memming R (1996) Physical chemistry of semiconductor−liquid interfaces. J Phys Chem 100(31):13061–13078. doi:10.1021/jp953720e

    Article  Google Scholar 

  • Ono M, Fujii K, Ito T, Iwaki Y, Hirako A, Yao T, Ohkawa K (2007) Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN. J Chem Phys 126(5):054708. doi:10.1063/1.2432116, http://dx.doi.org

    Article  Google Scholar 

  • Park H, Kim KY, Choi W (2002) Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J Phys Chem B 106(18):4775–4781. doi:10.1021/jp025519r

    Article  Google Scholar 

  • Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrog Energy 32(15):3248–3252. doi:10.1016/j.ijhydene.2007.04.036, http://dx.doi.org

    Article  Google Scholar 

  • Pleskov YV (2002) Electrochemistry of diamond: a review. Russ J Electrochem 38(12):1275–1291. doi:10.1023/a:1021651920042

    Article  Google Scholar 

  • Rajeshwar K, McConnell RD, Licht S (2008) Solar hydrogen generation. Springer, New York

    Book  Google Scholar 

  • Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334(6056):645–648. doi:10.1126/science.1209816

    Article  Google Scholar 

  • Rodenas P, Song T, Sudhagar P, Marzari G, Han H, Badia-Bou L, Gimenez S, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Paik U, Kang YS (2013) Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater 3(2):176–182. doi:10.1002/aenm.201200255

    Article  Google Scholar 

  • Sato K, Fujii K, Koike K, Goto T, Yao T (2009) Anomalous time variation of photocurrent in GaN during photoelectrochemical reaction for H2 gas generation in NaOH aqueous solution. Phys Status Solidi C 6(S2):S635–S638. doi:10.1002/pssc.200880814

    Article  Google Scholar 

  • Sze SM, Ng KK (2006) Physics of semiconductor devices. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Trevisan R, Rodenas P, Gonzalez-Pedro V, Sima C, Sanchez RS, Barea EM, Mora-Sero I, Fabregat-Santiago F, Gimenez S (2013) Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J Phys Chem Lett 4(1):141–146. doi:10.1021/jz301890m

    Article  Google Scholar 

  • Tubbesing K, Meissner D, Memming R, Kastening B (1986) On the kinetics of electron transfer reactions at illuminated InP electrodes. J Electroanal Chem Interf Electrochem 214(1–2):685–698. doi:10.1016/0022-0728(86)80132-2, http://dx.doi.org

    Article  Google Scholar 

  • Valderrama RC, Sebastian PJ, Pantoja Enriquez J, Gamboa SA (2005) Photoelectrochemical characterization of CIGS thin films for hydrogen production. Sol Energy Mater Sol Cells 88(2):145–155. doi:10.1016/j.solmat.2004.10.011, http://dx.doi.org

    Article  Google Scholar 

  • Van de Walle CG, Neugebauer J (2003) Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423(6940):626–628

    Article  Google Scholar 

  • Verlage E, Hu S, Liu R, Jones RJR, Sun K, Xiang C, Lewis NS, Atwater HA (2015) A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III-V light absorbers protected by amorphous TiO2 films. Energ Environ Sci 8(11):3166–3172. doi:10.1039/C5EE01786F

    Article  Google Scholar 

  • Wang Y, Wang T, Da P, Xu M, Wu H, Zheng G (2013) Silicon nanowires for biosensing, energy storage, and conversion. Adv Mater 25(37):5177–5195. doi:10.1002/adma.201301943

    Article  Google Scholar 

  • Wilson JR, Park SM (1982) Photoanodic dissolution of n—CdS studied by rotating ring‐disk electrodes. J Electrochem Soc 129(1):149–154. doi:10.1149/1.2123739

    Article  Google Scholar 

  • Wünsch F, Nakato Y, Tributsch H (2002) Minority carrier accumulation and interfacial kinetics in nanosized Pt-dotted silicon electrolyte interfaces studied by microwave techniques. J Phys Chem B 106(44):11526–11530. doi:10.1021/jp021016+

    Article  Google Scholar 

  • Yoon KH, Lee JW, Cho YS, Kang DH (1996) Photoeffects in WO3/GaAs electrode. J Appl Phys 80(12):6813–6818. doi:10.1063/1.363810, http://dx.doi.org

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsushi Fujii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fujii, K. (2016). Non-Oxide Materials (Nitrides, Chalcogenides, and Arsenides). In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics