Skip to main content

Analysis of Photoelectrochemical Systems by Impedance Spectroscopy

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production

Abstract

The operation of photovoltaic and photoelectrochemical systems based on semiconductors that absorb visible light involves a variety of electronic processes in the semiconductor that are followed by charge extraction and photoelectrochemical reactions at the solid/liquid interface. In recent years, a wide variety of semiconductor systems have been developed, and an increasingly complex structure of the catalyzed surface, nanostructured morphologies, and tandem configurations are being investigated. Here we describe the application of frequency-modulated impedance spectroscopy to provide mechanistic information about the different kinetic steps, as well as the distribution of energetic features as band bending and flat band potentials. The paper is focused on the interpretation of impedance spectroscopy results that contain key information about the photoelectrochemical performances of semiconductor systems. In particular, we investigate the origin of cathodic shift in water oxidation reaction due to different surface treatments, and we distinguish the effects of variation of recombination and charge transfer kinetics based on the equivalent circuit that can be established from impedance spectroscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allongue P, Cachet H (1984) I-V curve and surface state capacitance at illuminated semiconductor/liquid contacts. J Electroanal Chem 176:369–375

    Article  Google Scholar 

  • Badia-Bou L, Mas-Marza E, Rodenas P, Barea EM, Fabregat-Santiago F, Gimenez S, Peris E, Bisquert J (2013) Water oxidation at hematite photoelectrodes with an iridium-based catalyst. J Phys Chem C 117:3826–3833

    Article  Google Scholar 

  • Balandeh M, Mezzetti A, Tacca A, Leonardi S, Marra G, Divitini G, Ducati C, Meda L, Di Fonzo F (2015) Quasi-1D hyperbranched WO3 nanostructures for low-voltage photoelectrochemical water splitting. J Mater Chem A 3:6110–6117

    Article  Google Scholar 

  • Basu M, Zhang Z-W, Chen C-J, Chen P-T, Yang K-C, Ma C-G, Lin CC, Hu S-F, Liu R-S (2015) Heterostructure of Si and CoSe2: a promising photocathode based on a non-noble metal catalyst for photoelectrochemical hydrogen evolution. Angew Chem Int Ed 54:6211–6216

    Article  Google Scholar 

  • Bertoluzzi L, Bisquert J (2012) Equivalent circuit of electrons and holes in thin semiconductor films for photoelectrochemical water splitting applications. J Phys Chem Lett 3:2517–2522

    Google Scholar 

  • Bertoluzzi L, Lopez-Varo P, Jimenez Tejada JA, Bisquert J (2016) Charge transfer processes at the semiconductor/electrolyte interface for solar fuel production: insight from impedance spectroscopy. J Mater Chem A 4:2873–2879

    Google Scholar 

  • Bisquert J (2002) Theory of the impedance of electron diffusion and recombination in a thin layer. J Phys Chem B 106:325–333

    Article  Google Scholar 

  • Bisquert J (2008) Beyond the quasi-static approximation: impedance and capacitance of an exponential distribution of traps. Phys Rev B 77:235203

    Article  Google Scholar 

  • Bisquert J (2010) Theory of the impedance of charge transfer via surface states in dye-sensitized solar cells. J Electroanal Chem 646:43–51

    Article  Google Scholar 

  • Bisquert J (2014) Nanostructured energy devices: equilibrium concepts and kinetics. CRC Press, Boca Raton

    Book  Google Scholar 

  • Bisquert J, Fabregat-Santiago F (2010) In: Kalyanasundaram K (ed) Dye-sensitized solar cells. CRC Press, Boca Raton

    Google Scholar 

  • Bisquert J, Cahen D, Hodes G, Ruhle S, Zaban A (2004) Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells. J Phys Chem B 108:8106–8118

    Article  Google Scholar 

  • Caban-Acevedo M, Kaiser NS, English CR, Liang D, Thompson BJ, Chen H-E, Czech KJ, Wright JC, Hamers RJ, Jin S (2014) Ionization of high-density deep donor defect states explains the low photovoltage of iron pyrite single crystals. J Am Chem Soc 136:17163–17179

    Article  Google Scholar 

  • Cachet H, Sutter EMM (2015) Kinetics of water oxidation at TiO2 nanotube arrays at different pH domains investigated by electrochemical and light-modulated impedance spectroscopy. J Phys Chem C 119:25548–25558

    Article  Google Scholar 

  • Cendula P, Tilley SD, Gimenez S, Bisquert J, Schmid M, Grätzel M, Schumacher JO (2014) Calculation of the energy band diagram of a photoelectrochemical water splitting cell. J Phys Chem C 118:29599–29607

    Article  Google Scholar 

  • Chou J-C, Lin S-A, Lee C-Y, Gan J-Y (2013) Effect of bulk doping and surface-trapped states on water splitting with hematite photoanodes. J Mater Chem A 1:5908–5914

    Article  Google Scholar 

  • Cummings CY, Marken F, Peter LM, Wijayantha KGU, Tahir AA (2012) New insights into water splitting at mesoporous alpha-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies. J Am Chem Soc 134:1228–1234

    Article  Google Scholar 

  • Dareedwards MP, Goodenough JB, Hamnett A, Trevellick PR (1983) Electrochemistry and photoelectrochemistry of Iron(III) oxide. J Chem Soc Farad Trans I 79:2027–2041

    Article  Google Scholar 

  • Doyle RL, Lyons MEG (2013) An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys Chem Chem Phys 15:5224–5237

    Article  Google Scholar 

  • Fabregat-Santiago F, Bisquert J, Garcia-Belmonte G, Boschloo G, Hagfeldt A (2005) Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy. Sol Energy Mater Sol Cells 87:117–131

    Article  Google Scholar 

  • Fabregat-Santiago F, Garcia-Belmonte G, Mora-Seró I, Bisquert J (2011) Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys Chem Chem Phys 13:9083–9118

    Article  Google Scholar 

  • Freund T, Morrison SR (1968) Mechanisms of cathodic processes on semiconductor Zinc Oxide. Surf Sci 9:119

    Article  Google Scholar 

  • Gimenez S, Dunn HK, Rodenas P, Fabregat-Santiago F, Miralles SG, Barea EM, Trevisan R, Guerrero A, Bisquert J (2012) Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 668:119–125

    Article  Google Scholar 

  • Hens Z (1999) The electrochemical impedance on one-equivalent electrode processes at dark semiconductor redox electrodes involving charge transfer through surface states. 1. Theory. J Phys Chem B 103:122–129

    Article  Google Scholar 

  • Hisatomi T, Le Formal F, Cornuz M, Brillet J, Tetreault N, Sivula K, Graetzel M (2011) Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ Sci 4:2512–2515

    Article  Google Scholar 

  • Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    Article  Google Scholar 

  • Hu Y, Boudoire F, Hermann-Geppert I, Bogdanoff P, Tsekouras G, Mun BS, Fortunato G, Graetzel M, Braun A (2016) Molecular origin and electrochemical influence of capacitive surface states on iron oxide photoanodes. J Phys Chem C. doi:10.1021/acs.jpcc.5b08013

    Google Scholar 

  • Iandolo B, Hellman A (2014) The role of surface states in the oxygen evolution reaction on hematite. Angew Chem Int Ed 53:13404–13408

    Article  Google Scholar 

  • Kelly JJ, Memming R (1982) The influence of surface recombination and trapping on the cathodic photocurrent at p-type III-V electrodes. J Electrochem Soc 129:730–738

    Article  Google Scholar 

  • Klahr B, Hamann T (2014) Water oxidation on hematite photoelectrodes: insight into the nature of surface states through in situ spectroelectrochemistry. J Phys Chem C 118:10393–10399

    Article  Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012a) Electrochemical and photoelectrochemical investigation of water oxidation with hematite electrodes. Energy Environ Sci 5:7626–7636

    Article  Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW (2012b) Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes. J Am Chem Soc 134:16693–16700

    Article  Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J (2012c) Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 134:4294–4302

    Article  Google Scholar 

  • Klahr B, Gimenez S, Zandi O, Fabregat-Santiago F, Hamann T (2015) Competitive photoelectrochemical methanol and water oxidation with hematite electrodes. ACS Appl Mater Interfaces 7:7653–7660

    Article  Google Scholar 

  • Le Formal F, Tetreault N, Cornuz M, Moehl T, Graetzel M, Sivula K (2011) Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem Sci 2:737–743

    Article  Google Scholar 

  • Li J, Peter LM (1985) Surface recombination at semiconductor electrodes. Part III. Steady-state and intensity modulated photocurrents response. J Electroanal Chem 193:27–47

    Article  Google Scholar 

  • Li J, Meng F, Suri S, Ding W, Huang F, Wu N (2012) Photoelectrochemical performance enhanced by a nickel oxide-hematite p-n junction photoanode. Chem Commun 48:8213–8215

    Article  Google Scholar 

  • Lin Y, Xu Y, Mayer MT, Simpson ZI, McMahon G, Zhou S, Wang D (2012) Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting. J Am Chem Soc 134:5508–5511

    Article  Google Scholar 

  • Martinson ABF, Goes MS, Fabregat-Santiago F, Bisquert J, Pellin MJ, Hupp JT (2009) Electron transport in dye-sensitized solar cells based on ZnO nanotubes: evidence for highly efficient charge collection and exceptionally rapid dynamics. J Phys Chem A 113:4015–4021

    Article  Google Scholar 

  • Monllor-Satoca D, Bartsch M, Fabrega C, Genc A, Reinhard S, Andreu T, Arbiol J, Niederberger M, Morante JR (2015) What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy Environ Sci 8:3242–3254

    Article  Google Scholar 

  • Peter LM (1990) Dynamic aspects of semiconductor photoelectrochemistry. Chem Rev 90:753–769

    Article  Google Scholar 

  • Ponomarev EA, Peter LM (1995) A comparison of intensity modulated photocurrent spectroscopy and photoelectrochemical impedance spectroscopy in a study of photoelectrochemical hydrogen evolution at p-InP. J Electroanal Chem 397:45–52

    Article  Google Scholar 

  • Pyper KJ, Yourey JE, Bartlett BM (2013) Reactivity of CuWO4 in photoelectrochemical water oxidation is dictated by a midgap electronic state. J Phys Chem C 117:24726–24732

    Article  Google Scholar 

  • Raga SR, Barea EM, Fabregat-Santiago F (2012) Analysis of the origin of open circuit voltage in dye solar cells. J Phys Chem Lett 3:1629–1634

    Article  Google Scholar 

  • Reichman J (1980) The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells. Appl Phys Lett 36:574–577

    Article  Google Scholar 

  • Riha SC, Klahr BM, Tyo EC, Seifert S, Vajda S, Pellin MJ, Hamann TW, Martinson ABF (2013) Atomic layer deposition of a submonolayer catalyst for the enhanced photoelectrochemical performance of water oxidation with hematite. ACS Nano 7:2396–2405

    Article  Google Scholar 

  • Rodenas P, Song T, Sudhagar P, Marzari G, Han H, Badia-Bou L, Gimenez S, Fabregat-Santiago F, Mora-Sero I, Bisquert J, Paik U, Kang YS (2013) Quantum dot based heterostructures for unassisted photoelectrochemical hydrogen generation. Adv Energy Mater 3:176–182

    Article  Google Scholar 

  • Salvador P, Gutierrez C (1984) The nature of surface states involved in the photo- and electroluminescence spectra of n-titanium dioxide electrodes. J Phys Chem 88:3696–3698

    Article  Google Scholar 

  • Salvador P, Gutiérrez C (1984) Mechanisms of charge transfer at the semiconductor-electrolyte interface. J Electrochem Soc 131:326–336

    Article  Google Scholar 

  • Shi X, Herraiz-Cardona I, Bertoluzzi L, Lopez-Varo P, Bisquert J, Park JH, Gimenez S (2016) Understanding the synergistic effect of WO3-BiVO4 heterostructures by impedance spectroscopy. Phys Chem Chem Phys 18:9255–9261. doi:10.1039/C5CP07905E

    Google Scholar 

  • Steier L, Herraiz-Cardona I, Gimenez S, Fabregat-Santiago F, Bisquert J, Tilley SD, Graetzel M (2014) Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv Funct Mater 24:7681–7688

    Article  Google Scholar 

  • Tench DM, Gerischer H (1977) The phototransition in ZnO at 380 nm studied by anodic photocurrents. J Electrochem Soc 124:1612–1618

    Article  Google Scholar 

  • Trevisan R, Rodenas P, Gonzalez-Pedro V, Sima C, Sanchez RS, Barea EM, Mora-Sero I, Fabregat-Santiago F, Gimenez S (2013) Harnessing infrared photons for photoelectrochemical hydrogen generation. A PbS quantum dot based “quasi-artificial leaf”. J Phys Chem Lett 4:141–146

    Article  Google Scholar 

  • Vanmaekelbergh D (1997) Direct and surface state mediated electron transfer at semiconductor/electrolyte junctions. II. A comparison of the interfacial admittance. Electrochim Acta 42:1135–1141

    Article  Google Scholar 

  • Wang Q, Ito S, Grätzel M, Fabregat-Santiago F, Mora-Seró I, Bisquert J, Bessho T, Imai H (2006) Characteristics of high efficiency dye-sensitized solar cells. J Phys Chem B 110:19406–19411

    Article  Google Scholar 

  • Xu J, Herraiz-Cardona I, Yang X, Gimenez S, Antonietti M, Shalom M (2015) The complex role of carbon nitride as a sensitizer in photoelectrochemical cells. Adv Opt Mater 3(8):1052–1058

    Article  Google Scholar 

  • Yang W, Yu Y, Starr MB, Yin X, Li Z, Kvit A, Wang S, Zhao P, Wang X (2015) Ferroelectric polarization-enhanced photoelectrochemical water splitting in TiO2–BaTiO3 core–shell nanowire photoanodes. Nano Lett 15:7574–7580

    Article  Google Scholar 

  • Yatom N, Neufeld O, Caspary Toroker M (2015) Toward settling the debate on the role of Fe2O3 surface states for water splitting. J Phys Chem C 119:24789–24795

    Article  Google Scholar 

  • Zandi O, Hamann TW (2014) Enhanced water splitting efficiency through selective surface state removal. J Phys Chem Lett 5:1522–1526

    Article  Google Scholar 

  • Zhong DK, Gamelin DR (2010) Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: oxygen evolution and resolution of a kinetic bottleneck. J Am Chem Soc 132:4202–4207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bisquert, J., Giménez, S., Bertoluzzi, L., Herraiz-Cardona, I. (2016). Analysis of Photoelectrochemical Systems by Impedance Spectroscopy. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics