Skip to main content

Interface Engineering of Semiconductor Electrodes for Photoelectrochemical Water Splitting: Application of Surface Characterization with Photoelectron Spectroscopy

  • Chapter
  • First Online:
Photoelectrochemical Solar Fuel Production

Abstract

In this chapter we discuss at first bulk and interface related requirements of efficient photoelectrochemical device structures for water splitting. Maximized conversion efficiencies need photovoltages produced in the photovoltaic component of the device, which are adapted to the electrochemical performance of the electrolyzer components without energetic losses in their coupling across the involved interfaces. The photocurrents must approach quantum efficiencies of one for all absorbed photons above the band gap, which will only be possible for adjusted minority carrier diffusion lengths. We emphasize that to our expectations only multi-junction devices will provide photovoltages high enough for water splitting without any additional bias. Appropriate interface engineering layers must be developed for proper chemical and electronic surface passivation. In addition, highly efficient electrocatalysts, either for the hydrogen or oxygen evolution reaction, must be adjusted in their energetic coupling to the semiconductor band edges and to the redox potentials in the electrolyte with minimized losses in the chemical potentials

In the second part of this chapter we address our surface science approach to investigate the interface properties of photoelectrodes as relevant for water splitting. This is mainly photoelectron spectroscopy for solid-state contacts and a quasi in situ approach for electrolyte contacts combining transfer techniques from the electrolyte as well as model experiments to simulate the electrolyte by adsorption. Furthermore, possible routes to deposit and modify passivation layers and catalysts under controlled conditions are discussed.

In the last part of this chapter we illustrate our experimental results on interface engineering strategies and perspectives of photoelectrochemical water splitting devices concentrating on silicon based single and tandem cells. We present experimental data combining surface science and photoelectrochemical investigations, which are discussed in the framework of the above given conceptual considerations. Based on the obtained results the observed improvements but also the still given limitations can be related to clearly identified nonidealities in surface engineering either related to recombination losses at the semiconductor surface reducing photocurrents or due to not properly aligned energy states leading to potential losses across the interfaces.

We anticipate that photoelectrochemical thin film multi-junction devices with properly aligned interfaces will provide a competitive route to solar H2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat Commun 4:2195. doi:10.1038/ncomms3195

    Article  Google Scholar 

  • Abrahams JL, Casagrande LG, Rosenblum MD, Rosenbluth ML, Santangelo PG, Tufts BJ, Lewis NS (1987) Opportunities in semiconductor photoelectrochemistry. New J Chem 11:157–165

    Google Scholar 

  • Alonso M, Cimino R, Horn K (1990) Surface photovoltage effects in photoemission from metal-GaP(110) interfaces: importance for band bending evaluation. Phys Rev Lett 64:1947

    Article  Google Scholar 

  • Arrigo R, Hävecker M, Schuster ME, Ranjan C, Stotz E, Knop-Gericke A, Schlögl R (2013) In situ study of the gas-phase electrolysis of water on platinum by NAP-XPS. Angew Chem Int Ed 52(44):11660–11664. doi:10.1002/anie.201304765

    Article  Google Scholar 

  • Aruchamy A, Wrighton MS (1980) A comparison of the interface energetics for n-type cadmium sulfide/- and cadmium telluride/nonaqueous electrolyte junctions. J Phys Chem 84(22):2848–2854. doi:10.1021/j100459a004

    Article  Google Scholar 

  • Axnanda S, Crumlin EJ, Mao B, Rani, S, Chang R, Karlsson PG, Edwards MOM, Lundqvist M, Moberg R, Ross P, Hussain Z, Liu Z (2015) Using “Tender” X-ray ambient pressure X-Ray photoelectron spectroscopy as a direct probe of solid-liquid interface. Sci Rep 5. doi:10.1038/srep09788

  • Bard AJ, Bocarsly AB, Fan FRF, Walton EG, Wrighton MS (1980) The concept of Fermi level pinning at semiconductor/liquid junctions. Consequences for energy conversion efficiency and selection of useful solution redox couples in solar devices. J Am Chem Soc 102(11):3671–3677. doi:10.1021/ja00531a001

    Article  Google Scholar 

  • Bardeen J (1947) Surface states and rectification at a metal semiconductor contact. Phys Rev 71(10):717–727

    Article  MathSciNet  Google Scholar 

  • Beerbom M, Henrion O, Klein A, Mayer T, Jaegermann W (2000a) XPS analysis of wet chemical etching of GaAs(110) by Br2–H2O: comparison of emersion and model experiments. Electrochim Acta 45(28):4663–4672, doi:http://dx.doi.org/10.1016/S0013-4686(00)00618-6

    Article  Google Scholar 

  • Beerbom M, Mayer T, Jaegermann W (2000b) Synchrotron-induced photoemission of emersed GaAs electrodes after electrochemical etching in Br2/H2O solutions. J Phys Chem B 104(35):8503–8506. doi:10.1021/jp0011342

    Article  Google Scholar 

  • Beerbom M, Mayer T, Jaegermann W (2000c) Synchrotron-induced photoemission of emersed GaAs electrodes after electrochemical etching in Br-2/H2O solutions. J Phys Chem B 104(35):8503–8506

    Article  Google Scholar 

  • Bi C, Yuan Y, Fang Y, Huang J (2015) Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells. Adv Energy Mater 5(6). doi:10.1002/aenm.201401616

    Google Scholar 

  • Birch H (2009) The artificial leaf. Chem World(May):42–45

    Google Scholar 

  • Bluhm H, Hävecker M, Knop-Gericke A, Kiskinova M, Schlögl R, Salmeron M (2007) In-situ X-ray photoelectron spectroscopy studies of gas-solid interfaces at near-ambient conditions. Mater Res Soc Bull 34(12):1022–1030

    Article  Google Scholar 

  • Bocarsly AB, Bookbinder DC, Dominey RN, Lewis NS, Wrighton MS (1980) Photoreduction at illuminated p-type semiconducting silicon photoelectrodes. Evidence for Fermi level pinning. J Am Chem Soc 102(11):3683–3688. doi:10.1021/ja00531a003

    Article  Google Scholar 

  • Bolton JR, Strickler SJ, Connolly JS (1985) Limiting and realizable efficiencies of solar photolysis of water. Nature 316(6028):495–500

    Article  Google Scholar 

  • Braun A, Augustynski J, Chandler EA, Mao SS, Miller EL, Turner JA, Ye J (2010) Photocatalysis for energy and environmental sustainability. J Mater Res 25(1–2)

    Google Scholar 

  • Briggs D, Seah MP (1983) Practical surface analysis by Auger and X-Ray photoelectron spectroscopy. Wiley, New York

    Google Scholar 

  • Brillson LJ (1982) The structure and properties of metal-semiconductor interfaces. Surf Sci Rep 2(2):123–326, doi:http://dx.doi.org/10.1016/0167-5729(82)90001-2

    Article  Google Scholar 

  • Calvet W, Murugasen E, Klett J, Kaiser B, Jaegermann W, Finger F, Hoch S, Blug M, Busse J (2014) Silicon based tandem cells: novel photocathodes for hydrogen production. Phys Chem Chem Phys 16:12043–12050. doi:10.1039/c3cp55198a

    Article  Google Scholar 

  • Cardona M, Ley L (eds) (1978) Photoemission in solids, vol I. Springer, Berlin

    Google Scholar 

  • Cardona M, Ley L (eds) (1979) Photoemission in solids, vol II. Springer, Berlin

    Google Scholar 

  • Carmody M, Mallick S, Margetis J, Kodama R, Biegala T, Xu D, Bechmann P, Garland JW, Sivananthan S (2010) Single-crystal II-VI on Si single-junction and tandem solar cells. Appl Phys Lett 96(15):153502, doi:http://dx.doi.org/10.1063/1.3386529

    Article  Google Scholar 

  • Casalongue HS, Kaya S, Viswanathan V, Miller DJ, Friebel D, Hansen HA, Nørskov JK, Nilsson A, Ogasawara H (2013) Direct observation of the oxygenated species during oxygen reduction on a platinum fuel cell cathode. Nat Commun 4:2817. doi:10.1038/ncomms3817

    Article  Google Scholar 

  • Chambers SA (1992) Elastic scattering and interference of backscattered primary. Auger and X-ray photoelectrons at high kinetic energy: principles and applications. Surf Sci Rep 16:261–331

    Article  Google Scholar 

  • Chiarotti G (ed) (1993) Physics of solid surfaces. Springer, Heidelberg

    Google Scholar 

  • Cowley AM, Sze SM (1965) Surface states and barrier height of metal-semiconductor systems. J Appl Phys 36:3212

    Article  Google Scholar 

  • Doniach S, Sunjic M (1970) Many-electron singularity in X-Ray photoemission and X-Ray line spectra from metals. J Phys C3:285–291

    Google Scholar 

  • Dotan H, Sivula K, Gratzel M, Rothschild A, Warren SC (2011) Probing the photoelectrochemical properties of hematite (alpha-Fe2O3) electrodes using hydrogen peroxide as a hole scavenger. Energy Environ Sci 4(3):958–964. doi:10.1039/c0ee00570c

    Article  Google Scholar 

  • Eberhardt W (ed) (1995) Applications of synchrotron radiation. Springer, Berlin

    Google Scholar 

  • Egelhoff WF Jr (1987) Core-level binding-energy shifts at surfaces and in solids. Surf Sci Rep 6:253–415

    Article  Google Scholar 

  • Einstein A (1905a) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Phys 322(6):132–148. doi:10.1002/andp.19053220607

    Article  MATH  Google Scholar 

  • Einstein A (1905b) Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Phys 17:132

    Article  MATH  Google Scholar 

  • Ensling D, Hunger R, Kraft D, Mayer T, Jaegermann W, Rodriguez-Girones M, Ichizli V, Hartnagel HL (2003) Pulse plating of Pt on n-GaAs (100) wafer surfaces: synchrotron induced photoelectron spectroscopy and XPS of wet fabrication processes. Nucl Inst Methods Phys Res B 200:432–438

    Article  Google Scholar 

  • Ertl G, Küppers J (1985) Low energy electrons and surface chemistry. Verlag Chemie, Weinheim

    Google Scholar 

  • Fadley CS (1993) Diffraction and holography with photoelectrons and Auger electrons: some new directions. Surf Sci Rep 19:231–264

    Article  Google Scholar 

  • Forro L, Chauvet O, Emin D, Zuppiroli L, Berger H, Lévy F (1994) High mobility n‐type charge carriers in large single crystals of anatase (TiO2). J Appl Phys 75(1):633–635, doi:http://dx.doi.org/10.1063/1.355801

    Article  Google Scholar 

  • Franciosi A, Van de Walle CG (1996) Heterojunction band offset engineering. Surf Sci Rep 25:1–140

    Article  Google Scholar 

  • Frankl DR (1967) Electrical properties of semiconductor surfaces. Elsevier, Oxford

    Google Scholar 

  • Fritsche R, Jaeckel B, Schulmeyer T, Klein A, Jaegermann W (2004) Modification of the Si(111)/Au interface by a GaSe half-sheet termination layer. Appl Surf Sci 234(1–4):321–327

    Article  Google Scholar 

  • Fritsche J, Klein A, Jaegermann W (2005) Thin film solar cells: materials science at interfaces. Adv Eng Mater 7(10):914–920

    Article  Google Scholar 

  • Gao P, Gratzel M, Nazeeruddin MK (2014) Organohalide lead perovskites for photovoltaic applications. Energy Environ Sci 7(8):2448–2463. doi:10.1039/C4EE00942H

    Article  Google Scholar 

  • Garland JW, Biegala T, Carmody M, Gilmore C, Sivananthan S (2011) Next-generation multijunction solar cells: the promise of II-VI materials. J Appl Phys 109(10):102423, doi:http://dx.doi.org/10.1063/1.3582902

    Article  Google Scholar 

  • Gärtner WW (1959) Depletion-layer photoeffects in semiconductors. Phys Rev 116(1):84–87

    Article  Google Scholar 

  • Gassenbauer Y, Schafranek R, Klein A, Zafeiratos S, Hävecker M, Knop-Gericke A, Schlögl R (2006) Surface states, surface potentials and segregation at surfaces of tin-doped In2O3. Phys Rev B 73:245312

    Article  Google Scholar 

  • Gerischer H (1969) Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis. Surf Sci 18(1):97–122, doi:http://dx.doi.org/10.1016/0039-6028(69)90269-6

    Article  Google Scholar 

  • Gerischer H (1970) Semiconductor electrochemistry. In: Physical chemistry: an advanced treatise, vol 9. Academic, New York, pp 463–542

    Google Scholar 

  • Göpel W, Rocker G, Feierabend R (1983) Intrinsic defects of TiO2(110): interaction with chemisorbed O2, H2, CO, and CO2. Phys Rev B 28(6):3427–3438

    Article  Google Scholar 

  • Green MA (1986) Solar cells: operating principles, technology and system applications. University of New South Wales, Sydney

    Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2012) Solar cell efficiency tables (version 39). Prog Photovolt Res Appl 20(1):12–20. doi:10.1002/pip.2163

    Article  Google Scholar 

  • Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (Version 45). Prog Photovolt Res Appl 23(1):1–9. doi:10.1002/pip.2573

    Article  Google Scholar 

  • Grigoryev DV, Lozovoy KA, Pishchagin AA (2014) Analysis of efficiency of solar energy conversion by tandem Cd x Zn 1-x Te/Si solar cell. J Phys Conf Ser 541(1):012048

    Article  Google Scholar 

  • Grimes CA, Varghese OK, Ranjan S (2008) Light, water, hydrogen. Springer, New York

    Book  Google Scholar 

  • Hansson GV, Uhrberg RIG (1988) Photoelectron spectroscopy of surface states on semiconductor surfaces. Surf Sci Rep 9(5–6):197–292, doi:http://dx.doi.org/10.1016/0167-5729(88)90003-9

    Article  Google Scholar 

  • Hanusch FC, Wiesenmayer E, Mankel E, Binek A, Angloher P, Fraunhofer C, Giesbrecht N, Feckl JM, Jaegermann W, Johrendt D, Bein T, Docampo P (2014) Efficient planar heterojunction perovskite solar cells based on formamidinium lead bromide. J Phys Chem Lett 5(16):2791–2795. doi:10.1021/jz501237m

    Article  Google Scholar 

  • Harrison WA (1989) Electronic structure and the properties of solids. Dover Publications, New York

    Google Scholar 

  • Hecht MH (1990) Role of photocurrent in low-temperature photoemission studies of Schottky barrier formation. Phys Rev B 41(11):7918–7921

    Article  Google Scholar 

  • Heine V (1965) Theory of surface states. Phys Rev 138(6):A1689–A1696

    Article  MATH  Google Scholar 

  • Henrion O, Jaegermann W (1997) Surface redox reactions of cobaltocene adsorbed onto pyrolytic graphite (HOPG). Surf Sci 387(1–3):L1073–L1078, doi:http://dx.doi.org/10.1016/S0039-6028(97)00514-1

    Article  Google Scholar 

  • Henrion O, Löher T, Klein A, Pettenkofer C, Jaegermann W (1996) Low temperature adsorption of water on cleaved GaAs(110) surfaces. Surf Sci Lett 366:L685–L688, doi:http://dx.doi.org/10.1016/0039-6028(96)00886-2

    Article  Google Scholar 

  • Henrion O, Klein A, Jaegermann W (2000) Water adsorption on UHV cleaved InP(110) surfaces. Surf Sci 457(1–2):L337–L341, doi:http://dx.doi.org/10.1016/S0039-6028(00)00417-9

    Article  Google Scholar 

  • Hertz H (1887) Ueber einen Einfluss des ultravioletten Lichtes auf die electrische Entladung. Ann Phys 267(8):983–1000

    Article  Google Scholar 

  • Himpsel FJ (1983) Angle-resolved measurements of the photoemission of electrons in the study of solids. Adv Phys 32:1–51

    Article  Google Scholar 

  • Horn K, Alonso M, Cimino R (1992) Non-equilibrium effects in photoemission from metal-semiconductor interfaces. Appl Surf Sci 56–58:271–289

    Article  Google Scholar 

  • Hu S, Xiang C, Haussener S, Berger AD, Lewis NS (2013) An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ Sci 6(10):2984–2993. doi:10.1039/C3EE40453F

    Article  Google Scholar 

  • Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS (2014) Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344(6187):1005–1009. doi:10.1126/science.1251428

    Article  Google Scholar 

  • Hüfner S (1995) Photoelectron spectroscopy, Springer series in solid-state sciences. Springer, Berlin

    Book  Google Scholar 

  • Hunger R, Schulmeyer T, Klein A, Jaegermann W, Lebedev M, Sakurai K, Niki S (2005) SXPS investigation of the Cd partial electrolyte treatment of CuInSe2 absorbers. Thin Solid Films 480–481:218–223

    Article  Google Scholar 

  • Jacobi K, Myler U, Althainz P (1990) Determination of band bending at the Si(113) surface from photovoltage-induced core-level shifts. Phys Rev B 41(15):10721–10726

    Article  Google Scholar 

  • Jaegermann W (1986) Adsorption of Br2 on n-MoSe2: modelling photoelectrochemistry in UHV. Chem Phys Lett 126(3/4):301–305

    Article  Google Scholar 

  • Jaegermann W (1996) The semiconductor/electrolyte interface: a surface science approach. In: White RE (ed) Modern aspects of electrochemistry, vol 30. Plenum Press, New York, pp 1–185

    Google Scholar 

  • Jaegermann W, Mayer T (1995) What do we learn from model experiments of semiconductor/electrolyte interfaces in UHV - coadsorption of Br-2 with Na and H2O on WSe2(0001). Surf Sci 335(1-3):343–352

    Article  Google Scholar 

  • Jaegermann W, Mayer T (2004) Surface science studies of elementary processes in photoelectrochemistry: adsorption of electrolyte components on layered transition metal dichalogenides. Sol Energy Mater Sol Cells 83(4):371–394

    Article  Google Scholar 

  • Jaegermann W, Mayer T (2005) Water adsorption on semiconductor surfaces. In: Bonzel H (ed) Landolt Börnstein, vol III/42. Springer, Berlin, pp 226–298

    Google Scholar 

  • Jaegermann W, Tributsch H (1988) Interfacial properties of semiconducting transition metal chalcogenides. Prog Surf Sci 29(1/2):1–167

    Article  Google Scholar 

  • Jaegermann W, Klein A, Mayer T (2009) Interface engineering of inorganic thin-film solar cells – materials-science challenges for advanced physical concepts. Adv Mater 21(42):4196–4206. doi:10.1002/adma.200802457

    Article  Google Scholar 

  • Kaiser B, Calvet W, Murugasen E, Ziegler J, Jaegermann W, Pust SE, Finger F, Hoch S, Blug M, Busse J (2015) Light induced hydrogen generation with silicon-based thin film tandem solar cells used as photocathode. Int J Hydrog Energy 40(2):899–904, doi:http://dx.doi.org/10.1016/j.ijhydene.2014.11.012

    Article  Google Scholar 

  • Keppner H, Meier J, Torres P, Fischer D, Shah A (1999) Microcrystalline silicon and micromorph tandem solar cells. Appl Phys A 69(2):169–177. doi:10.1007/s003390050987

    Article  Google Scholar 

  • Khaselev O, Turner JA (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280(5362):425–427. doi:10.1126/science.280.5362.425

    Article  Google Scholar 

  • Klein A (2013) Transparent conducting oxides: electronic structure – property relationship from photoelectron spectroscopy with in-situ sample preparation. J Am Ceram Soc 96:331

    Google Scholar 

  • Klein A, Säuberlich F (2008) Surfaces and interfaces of sputter-deposited ZnO films. In: Ellmer K, Klein A, Rech B (eds) Transparent conductive zinc oxide: basics and applications in thin film solar cells. Springer, Berlin, pp 125–185

    Chapter  Google Scholar 

  • Klein A, Tomm Y, Schlaf R, Pettenkofer C, Jaegermann W, Lux-Steiner MC, Bucher E (1998) Photovoltaic properties of WSe2 single crystals studied by photoelectron spectroscopy. Sol Energy Mater Sol Cells 51:181–191

    Article  Google Scholar 

  • Klein A, Dieker H, Späth B, Fons P, Kolobov A, Steimer C, Wuttig M (2008a) Changes in electronic structure and chemical bonding upon crystallization of the phase change material GeSb2Te4. Phys Rev Lett 100:016402

    Article  Google Scholar 

  • Klein A, Mayer T, Thissen A, Jaegermann W (2008b) Photoelectron spectroscopy in materials science and physical chemistry: analysis of composition, chemical bonding and electronic structure of surfaces and interfaces. Bunsenmagazin 10(4):124–139

    Google Scholar 

  • Klett J, Krähling S, Elger B, Schäfer R, Kaiser B, Jaegermann W (2014) The electronic interaction of Pt-clusters with ITO and HOPG surfaces upon water adsorption. Z Phys Chem 228(4–5):503–520. doi:10.1515/zpch-2013-0499

    Google Scholar 

  • Kowalczyk SP, McFeely FR, Ley L, Gritsyna VT, Shirley DA (1977) The electronic structure of SrTiO3 and some simple related oxides (MgO, Al2O3, SrO, TiO2). Solid State Commun 23:161

    Article  Google Scholar 

  • Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP (1980) Precise determination of the valence-band edge in X-Ray photoemission spectra: application to measurement of semiconductor interface potentials. Phys Rev Lett 44:1620

    Article  Google Scholar 

  • Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP (1983) Semiconductor core-level to valence-band maximum binding-energy differences: precise determination by x-ray photoelectron spectroscopy. Phys Rev B 28(4):1965–1977

    Article  Google Scholar 

  • Kühne HM, Tributsch H (1986) Energetics and dynamics of the interface of RuS2 and implications for photoelectrolysis of water. J Electroanal Chem 201(2):263–282, doi:http://dx.doi.org/10.1016/0022-0728(86)80054-7

    Article  Google Scholar 

  • Kunat M, Girol SG, Becker T, Burghaus U, Wöll C (2002) Stability of the polar surfaces of ZnO: a reinvestigation using He-atom scattering. Phys Rev B 66:081402

    Article  Google Scholar 

  • Kurtin S, McGill TC, Mead CA (1969) Fundamental transition in the electronic nature of solids. Phys Rev Lett 22:1433–1436

    Article  Google Scholar 

  • Lang ND, Kohn W (1970) Theory of metal surfaces: charge density and surface energy. Phys Rev B 1:4555

    Article  Google Scholar 

  • Lebedev MV, Ensling D, Hunger R, Mayer T, Jaegermann W (2004) Synchrotron photoemission spectroscopy study of ammonium hydroxide etching to prepare well-ordered GaAs(100) surfaces. Appl Surf Sci 229(1-4):226–232. doi:10.1016/j.apsusc.2004.01.067

    Article  Google Scholar 

  • Lebedev MV, Mankel E, Mayer T, Jaegermann W (2008) Wet etching of GaAs(100) in acidic and basic solutions: a synchrotron−photoemission spectroscopy study. J Phys Chem C 112(47):18510–18515. doi:10.1021/jp805568t

    Article  Google Scholar 

  • Lewerenz H-J, Jungblut H (1995) Photovaltaik. Springer, Berlin

    Book  Google Scholar 

  • Lewerenz H-J, Peter L (eds) (2013) Photoelectrochemical water splitting. Royal Soc. Chem, Cambridge

    Google Scholar 

  • Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2000) Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J Phys Chem B 104(38):8920–8924. doi:10.1021/jp002083b

    Article  Google Scholar 

  • Lichterman MF, Hu S, Richter MH, Crumlin EJ, Axnanda S, Favaro M, Drisdell W, Hussain Z, Mayer T, Brunschwig BS, Lewis NS, Liu Z, Lewerenz H-J (2015) Direct observation of the energetics at a semiconductor/liquid junction by operando X-ray photoelectron spectroscopy. Energy Environ Sci. doi:10.1039/C5EE01014D

    Google Scholar 

  • Lin F, Boettcher SW (2014) Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat Mater 13(1):81–86. doi:10.1038/nmat3811

    Article  Google Scholar 

  • Louie SG, Chelikowsky JR, Cohen ML (1977) Ionicity and the theory of Schottky barriers. Phys Rev B 15(4):2154–2162

    Article  Google Scholar 

  • Lu Y-C, Crumlin EJ, Veith GM, Harding JR, Mutoro E, Baggetto L, Dudney NJ, Liu Z, Shao-Horn Y (2012) In situ ambient pressure X-ray photoelectron spectroscopy studies of lithium-oxygen redox reactions. Sci Rep 2

    Google Scholar 

  • Luque A, Hegedus S (eds) (2003) Handbook of photovoltaic science and engineering. Wiley, Chichester

    Google Scholar 

  • Luque A, Hegedus S (eds) (2011) Handbook of photovoltaic science and engineering, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Lüth H (1993) Surfaces and interfaces of solids. Springer, Berlin

    Book  Google Scholar 

  • Maeda K, Domen K (2010) Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett 1(18):2655–2661. doi:10.1021/jz1007966

    Article  Google Scholar 

  • Malizia M, Seger B, Chorkendorff I, Vesborg PCK (2014) Formation of a p-n heterojunction on GaP photocathodes for H2 production providing an open-circuit voltage of 710 mV. J Mater Chem A 2(19):6847–6853. doi:10.1039/C4TA00752B

    Article  Google Scholar 

  • Mallouk TE (2010) The emerging technology of solar fuels. J Phys Chem Lett 1(18):2738–2739. doi:10.1021/jz101161s

    Article  Google Scholar 

  • Many A, Goldstein Y, Grover NB (1965) Semiconductor surfaces. North-Holland Pub Co, New York

    Google Scholar 

  • May MM, Lewerenz HJ, Lackner D, Dimroth F, Hannappel T (2015) Efficient direct solar hydogen conbersion by in situ interface transformation of a tandem structure. Nat Commun 6:8286

    Google Scholar 

  • Mayer T, Jaegermann W (2000) A photoemission study of solute-solvent interaction: coadsorption of Na and H2O on WSe2 (0001). J Phys Chem B 104(25):5945–5952

    Article  Google Scholar 

  • Mayer T, Klein A, Lang O, Pettenkofer C, Jaegermann W (1992a) H2O adsorption on the layered chalcogenide semiconductors WSe2, InSe and GaSe. Surf Sci 269(270):909–914

    Article  Google Scholar 

  • Mayer T, Lehmann J, Pettenkofer C, Jaegermann W (1992b) Coadsorption of Na and Br2 on WSe2 (0001). Creating a surface redox couple? Chem Phys Lett 198(6):621–627, doi:http://dx.doi.org/10.1016/0009-2614(92)85039-D

    Article  Google Scholar 

  • Mayer T, Pettenkofer C, Jaegermann W (1996) Synchrotron-induced photoelectron spectroscopy of semiconductor/electrolyte model interfaces: coadsorption of Br2 and H2O on WSe2(0001). J Phys Chem 100(42):16966–16977. doi:10.1021/jp961116d

    Article  Google Scholar 

  • Mayer T, Lebedev M, Hunger R, Jaegermann W (2005) Elementary processes at semiconductor/electrolyte interfaces: perspectives and limits of electron spectroscopy. Appl Surf Sci 252(1):31–42, doi:http://dx.doi.org/10.1016/j.apsusc.2005.01.110

    Article  Google Scholar 

  • Mayer T, Lebedev MV, Hunger R, Jaegermann W (2006) Synchrotron photoemission analysis of semiconductor/electrolyte interfaces by the frozen-electrolyte approach: interaction of HCl in 2-propanol with GaAs(100). J Phys Chem B 110:2293–2301

    Article  Google Scholar 

  • McGilp JF (1984) On predicting the chemical reactivity of metal-semiconductor interfaces. J Phys C 17:2249–2254

    Article  Google Scholar 

  • Meissner D, Memming R (1988) Unpinning of energy bands in PEC cells: a consequence of surface chemistry and surface charge. In: Grassi G, Hall DO (eds) Photocatalytic production of energy-rich compounds. Elsevier, London, pp 138–147

    Google Scholar 

  • Memming R (2001) Semiconductor electrochemistry. Wiley, Weinheim

    Google Scholar 

  • Milnes AG, Feucht DL (1972) Heterojunctions and metal-semiconductor junctions. Academic, New York

    Google Scholar 

  • Mishima T, Taguchi M, Sakata H, Maruyama E (2011) Development status of high-efficiency HIT solar cells. Sol Energy Mater Sol Cells 95(1):18–21, doi:http://dx.doi.org/10.1016/j.solmat.2010.04.030

    Article  Google Scholar 

  • Moll M, Kley A, Pehlke E, Scheffler M (1996) GaAs equilibrium crystal shape from first principles. Phys Rev B 54(12):8844–8855

    Article  Google Scholar 

  • Mönch W (1993) Semiconductor surfaces and interfaces. Springer, Heidelberg

    Book  MATH  Google Scholar 

  • Mönch W (2003) Electronic properties of semiconductor interfaces. Springer, Heidelberg

    Google Scholar 

  • Morgner H (1994) The investigation of liquid surfaces by electron-spectroscopy. J Electron Spectrosc Relat Phenom 68:771–777

    Article  Google Scholar 

  • Morrison SR (1977) The chemical physics of surface. Plenum Press, New York

    Book  Google Scholar 

  • Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New York

    Book  Google Scholar 

  • Mosbacker HL, Strzhemechny YM, White BD, Smith PE, Look DC, Reynolds DC, Litton CW, Brillson LJ (2005) Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl Phys Lett 87:012102

    Article  Google Scholar 

  • Moss TS, Balkanski M (eds) (1994) Handbook on semiconductors. Elsevier, Amsterdam

    Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics, Inc., Eden Prairie

    Google Scholar 

  • Mutoro E, Luerßen B, Günther S, Janek J (2007) Photoelectron microscopy. Bunsenmagazin 9:18–33

    Google Scholar 

  • Myamlin VA, Pleskov YV (1967) Electrochemistry of semiconductors. Plenum, New York

    Book  Google Scholar 

  • Nakato Y, Tsubomura H (1992) Silicon photoelectrodes modified with ultrafine metal islands. Electrochim Acta 37(5):897–907, doi:http://dx.doi.org/10.1016/0013-4686(92)85041-I

    Article  Google Scholar 

  • Nakato Y, Ueda K, Yano H, Tsubomura H (1988) Effect of microscopic discontinuity of metal overlayers on the photovoltages in metal-coated semiconductor-liquid junction photoelectrochemical cells for efficient solar energy conversion. J Phys Chem 92(8):2316–2324. doi:10.1021/j100319a043

    Article  Google Scholar 

  • O’Reagan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    Article  Google Scholar 

  • Osterloh FE, Parkinson BA (2011) Recent developments in solar water-splitting photocatalysis. MRS Bull 36(01):17–22. doi:10.1557/mrs.2010.5

    Article  Google Scholar 

  • Peharz G, Dimroth F, Wittstadt U (2007) Solar hydrogen production by water splitting with a conversion efficiency of 18%. Int J Hydrog Energy 32(15):3248–3252, doi:http://dx.doi.org/10.1016/j.ijhydene.2007.04.036

    Article  Google Scholar 

  • Peter LM (2011) Towards sustainable photovoltaics: the search for new materials. Phil Trans R Soc A 369:1840–1856. doi:10.1098/rsta.2010.0348

    Article  Google Scholar 

  • Peter LM, Upul Wijayantha KG (2014) Photoelectrochemical water splitting at semiconductor electrodes: fundamental problems and new perspectives. ChemPhysChem 15(10):1983–1995. doi:10.1002/cphc.201402024

    Article  Google Scholar 

  • Prévot MS, Sivula K (2013) Photoelectrochemical tandem cells for solar water splitting. J Phys Chem C 117(35):17879–17893. doi:10.1021/jp405291g

    Article  Google Scholar 

  • Rajeshwar K, McConnell R, Licht S (eds) (2008) Solar hydrogen generation. Springer, New York

    Google Scholar 

  • Reckers P, Dimamay M, Klett J, Trost S, Zilberberg K, Riedl T, Parkinson BA, Brötz J, Jaegermann W, Mayer T (2015) Deep and shallow TiO2 gap states on cleaved anatase single crystal (101) surfaces, nanocrystalline anatase films, and ALD titania ante and post annealing. J Phys Chem C 119(18):9890–9898. doi:10.1021/acs.jpcc.5b01264

    Article  Google Scholar 

  • Reichmann J (1980) The current-voltage characteristics of semiconductor-electrolyte junction photo-voltaic cells. Appl Phys Lett 36:574–577

    Article  Google Scholar 

  • Reinert F, Hüfner S (2005) Photoemission spectroscopy—from early days to recent applications. New J Phys 7:97

    Article  Google Scholar 

  • Rhoderick EH, Williams RH (1988) Metal-semiconductor contacts, vol 19, 2nd edn, Monographs in electrical and electronic engineering. Clarendon, Oxford

    Google Scholar 

  • Rhodin TN, Gadzuk JW (1979) In: Rhodin TN, Ertl G (eds) The nature of the surface chemical bond. North-Holland, Amsterdam, pp 113–273

    Google Scholar 

  • Romm JJ (2005) The hype about hydrogen. Island Press, Washington

    Google Scholar 

  • Rosenbluth ML, Lewis NS (1986) Kinetic studies of carrier transport and recombination at the n-silicon methanol interface. J Am Chem Soc 108(16):4689–4695. doi:10.1021/ja00276a001

    Article  Google Scholar 

  • Rosenbluth ML, Lewis NS (1989) "Ideal" behavior of the open circuit voltage of semiconductor/liquid junctions. J Phys Chem 93(9):3735–3740. doi:10.1021/j100346a072

    Article  Google Scholar 

  • Rossi RC, Tan MX, Lewis NS (2000) Size-dependent electrical behavior of spatially inhomogeneous barrier height regions on silicon. Appl Phys Lett 77(17):2698–2700, doi:http://dx.doi.org/10.1063/1.1319534

    Article  Google Scholar 

  • Schafranek R, Payan S, Maglione M, Klein A (2008) Barrier heights at (Ba, Sr)TiO3/Pt interfaces studied by photoemission. Phys Rev B 77:195310

    Article  Google Scholar 

  • Schefold J, Kühne HM (1991) Charge transfer and recombination kinetics at photoelectrodes: a quantitative evaluation of impedance measurements. J Electroanal Chem 300(1–2):211–233, doi:http://dx.doi.org/10.1016/0022-0728(91)85396-7

    Article  Google Scholar 

  • Schellenberger A, Schlaf R, Pettenkofer C, Jaegermann W (1992) Synchrotron-induced surface-photovoltage saturation at intercalated Na/WSe2 interfaces. Phys Rev B 45(7):3538–3545

    Article  Google Scholar 

  • Schlaf R, Klein A, Pettenkofer C, Jaegermann W (1993) Laterally inhomogeneous surface potential distribution and photovoltage at clustered In/WSe2 (0001) interfaces. Phys Rev B 48(19):14242–14252

    Article  Google Scholar 

  • Schlaf R, Murata H, Kafafi ZH (2001) Work function measurements on indium tin oxide films. J Electron Spectrosc Relat Phenom 120:149–154

    Article  Google Scholar 

  • Schmickler W (2010) Interfacial electrochemistry, 2nd edn. Oxford University Press, London

    Book  Google Scholar 

  • Schulmeyer T, Hunger R, Klein A, Jaegermann W, Niki S (2004) Photoemission study and band alignment of the CdS/CuInSe2(001) heterojunction. Appl Phys Lett 84(16):3067–3069

    Article  Google Scholar 

  • Schwanitz K, Mankel E, Hunger R, Mayer T, Jaegermann W (2007a) Photoelectron spectroscopy at the solid-liquid interface of dye-sensitized solar cells: unique experiments with the solid-liquid interface analysis system SoLiAS at BESSY. Chimia 61(12):796–800

    Article  Google Scholar 

  • Schwanitz K, Weiler U, Hunger R, Mayer T, Jaegermann W (2007b) Synchrotron-induced photoelectron spectroscopy of the dye-sensitized nanocrystalline TiO2/electrolyte interface: band gap states and their interaction with dye and solvent molecules. J Phys Chem C 111(2):849–854. doi:10.1021/jp064689r

    Article  Google Scholar 

  • Seger B, Pedersen T, Laursen AB, Vesborg PCK, Hansen O, Chorkendorff I (2013a) Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J Am Chem Soc 135(3):1057–1064. doi:10.1021/ja309523t

    Article  Google Scholar 

  • Seger B, Tilley DS, Pedersen T, Vesborg PCK, Hansen O, Grätzel M, Chorkendorff I (2013b) Silicon protected with atomic layer deposited TiO2: durability studies of photocathodic H2 evolution. RSC Adv 3(48):25902–25907. doi:10.1039/c3ra45966g

    Article  Google Scholar 

  • Sharma BL (ed) (1984) Metal semiconductor Schottky barrier junctions and their applications. Plenum Press, New York

    Google Scholar 

  • Shirley DA, (1972) High-Resolution X-Ray Photoemission Spectrum of the Valence Bands of Gold, Phys. Rev. B 5, 4709. Published 15 June 1972

    Google Scholar 

  • Shockley W, Queisser HJ (1961) Detailed balance limit of efficiency of p‐n junction solar cells. J Appl Phys 32(3):510–519, doi:http://dx.doi.org/10.1063/1.1736034

    Article  Google Scholar 

  • Siegbahn K, Nordling C, Fahlman A, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergmark T, Karlsson S-E, Lindgren I, Lindberg B (1967) ESCA atomic molecular and solid state structure studied by means of electron spectroscopy. Almqvist and Wiksells, Uppsala

    Google Scholar 

  • Siegbahn H, Svensson S, Lundholm M (1981) A new method for esca studies of liquid-phase samples. J Electron Spectrosc Relat Phenom 24(2):205–213

    Article  Google Scholar 

  • Sinn C, Meissner D, Memming R (1990) Charge transfer processes at WSe2 electrodes with pH-controlled stability. J Electrochem Soc 137:168–172

    Article  Google Scholar 

  • Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost. High-efficiency solar cells. J Phys Chem Lett 4(21):3623–3630. doi:10.1021/jz4020162

    Article  Google Scholar 

  • Spicer WE, Kendelewicz T, Newman N, Chin KK, Lindau I (1986) The mechanisms of Schottky barrier pinning in III–V semiconductors: Criteria developed from microscopic (atomic level) and macroscopic experiments. Surf Sci 168(1–3):240–259, doi:http://dx.doi.org/10.1016/0039-6028(86)90855-1

    Article  Google Scholar 

  • Spicer WE, Kendelewicz T, Newman N, Cao R, McCants C, Miyano K, Lindau I, Liliental-Weber Z, Weber ER (1988) The advanced unified defect model and its applications. Appl Surf Sci 33–34:1009–1029, http://dx.doi.org/10.1016/0169-4332(88)90411-4

    Article  Google Scholar 

  • Styring S (2012) Artificial photosynthesis for solar fuels. Faraday Discuss 155:357–376

    Article  Google Scholar 

  • Sun Y-Y, Agiorgousis ML, Zhang P, Zhang S (2015) Chalcogenide perovskites for photovoltaics. Nano Lett 15(1):581–585. doi:10.1021/nl504046x

    Article  Google Scholar 

  • Sze SM (1981) Physics of semiconductor devices, 2nd edn. Wiley, New York

    Google Scholar 

  • Sze SM (1985) Semiconductor devices. Wiley, New York

    Google Scholar 

  • Tanuma S, Powell CJ, Penn DR (1991) Calculations of electron mean free path. Surf Interface Anal 17:911 & 927

    Google Scholar 

  • Tersoff J (1984a) Schottky barrier heights and the continuum of gap states. Phys Rev Lett 52(6):465–468

    Article  Google Scholar 

  • Tersoff J (1984b) Theory of semiconductor heterojunction: the role of quantum dipoles. Phys Rev B 30(8):4874–4877

    Article  Google Scholar 

  • Thiel PA, Madey TE (1987) The interaction of water with solid surfaces: fundamental aspects. Surf Sci Rep 7(6–8):211–385, doi:http://dx.doi.org/10.1016/0167-5729(87)90001-X

    Article  Google Scholar 

  • Tougaard S (1986) Background removal in X-Ray photoelectron spectroscopy: relative importance of intrinsic and extrinsic processes. Phys Rev B 34(10):6779–6783

    Article  Google Scholar 

  • Urbain F, Smirnov V, Becker J-P, Rau U, Finger F, Ziegler J, Kaiser B, Jaegermann W (2014a) a-Si:H/μc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production. J Mater Res 29(22):2605–2614. doi:10.1557/jmr.2014.308

    Article  Google Scholar 

  • Urbain F, Wilken K, Smirnov V, Astakhov O, Lambertz A, Becker J-P, Rau U, Ziegler J, Kaiser B, Jaegermann W, Finger F (2014b) Development of thin film amorphous silicon tandem junction based photocathodes providing high open-circuit voltages for hydrogen production. Int J Photoenergy 2014, 249317. doi:10.1155/2014/249317

    Article  Google Scholar 

  • Urbain F, Smirnov V, Becker J-P, Lambertz A, Yang F, Ziegler J, Kaiser B, Jaegermann W, Rau U, Finger F (2015) Approaching 10 % efficiency for solar hydrogen generation based on triple and quadruple junction thin film silicon solar cells. Energy Environmental Science, submitted

    Google Scholar 

  • Valdes A, Brillet J, Gratzel M, Gudmundsdottir H, Hansen HA, Jonsson H, Klupfel P, Kroes G-J, Le Formal F, Man IC, Martins RS, Norskov JK, Rossmeisl J, Sivula K, Vojvodic A, Zach M (2012) Solar hydrogen production with semiconductor metal oxides: new directions in experiment and theory. Phys Chem Chem Phys 14(1):49–70

    Article  Google Scholar 

  • van de Krol R, Grätzel M (eds) (2012) Photoelectrochemical hydrogen production. Springer, New York

    Google Scholar 

  • Vitomirov IM, Raisanen A, Finnefrock AC, Viturro RE, Brillson LJ, Kirchner PD, Pettit GD, Woodall JM (1992) Geometric ordering, surface chemistry, band bending, and work function at decapped GaAs(100) surfaces. Phys Rev B 46(20):13293–13302

    Article  Google Scholar 

  • von Oertzen A, Rotermund HH, Jakubith S, Ertl G (1991) The scanning photoemission microscope: a novel tool in surface science. Ultramicroscopy 36(1–3):107–116, doi:http://dx.doi.org/10.1016/0304-3991(91)90142-S

    Article  Google Scholar 

  • Wagner CD, Naumkin AV, Kraut-Vass A, Allison JW, Powell CJ, Rumble Jr JR (2003) NIST X-ray photoelectron spectroscopy database. http://srdata.nist.gov/xps/

  • Walter MG, Warren EL, McKone JR, Boettcher SW, Mi QX, Santori EA, Lewis NS (2010) Solar water splitting cells. Chem Rev 110(11):6446–6473. doi:10.1021/Cr1002326

    Article  Google Scholar 

  • Warren EL, McKone JR, Atwater HA, Gray HB, Lewis NS (2012) Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n + p-silicon microwire array photocathodes. Energy Environ Sci 5(11):9653–9661. doi:10.1039/C2EE23192A

    Article  Google Scholar 

  • Warren EL, Atwater HA, Lewis NS (2014) Silicon microwire arrays for solar energy-conversion applications. J Phys Chem C 118(2):747–759. doi:10.1021/jp406280x

    Article  Google Scholar 

  • Weber R, Winter B, Schmidt PM, Widdra W, Hertel IV, Dittmar M, Faubel M (2004) Photoemission from aqueous alkali-metal-iodide salt solutions using EUV synchrotron radiation. J Phys Chem B 108(15):4729–4736

    Article  Google Scholar 

  • Weiss W, Ranke W (2002) Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog Surf Sci 70:1–151

    Article  Google Scholar 

  • Wertheim GK (1989) Electronic structure of metal clusters. Zeitschrift für Physik D 12:319–326

    Article  Google Scholar 

  • Würfel P (2009) Physics of solar cells: from basic principles to advanced concepts, 2nd edn. Wiley, Weinheim

    Google Scholar 

  • Yu ET, McCaldin JO, McGill TC (1992) Band offsets in semiconductor heterojunctions. Solid State Phys 46:1–146

    Article  Google Scholar 

  • Zangwill A (1988) Physics at surfaces. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Zhang JZ (2011) Metal oxide nanomaterials for solar hydrogen generation from photoelectrochemical water splitting. MRS Bull 36(1):48–55, doi:http://dx.doi.org/10.1557/mrs.2010.9

    Article  Google Scholar 

  • Ziegler J, Kaiser B, Jaegermann W, Urbain F, Becker J-P, Smirnov V, Finger F (2014) Photoelectrochemical and photovoltaic characteristics of amorphous-silicon-based tandem cells as photocathodes for water splitting. ChemPhysChem 15(18):4026–4031. doi:10.1002/cphc.201402552

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding by the BMBF and the DFG within the priority program SPP 1613 “Solar Fuels,” which was essential for our research activities in this topic. We also would like to thank our cooperation partners from TU Darmstadt, FZ Jülich, Evonik, and HZ Berlin, who were involved in part of the work, which was cited in the references. We also like to acknowledge the contribution of our coworkers A. Klein, T. Mayer, and A. Thissen, who were part of the team who has developed our experimental infrastructure and measurement expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfram Jaegermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jaegermann, W., Kaiser, B., Ziegler, J., Klett, J. (2016). Interface Engineering of Semiconductor Electrodes for Photoelectrochemical Water Splitting: Application of Surface Characterization with Photoelectron Spectroscopy. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics