Skip to main content

Photoelectrochemical Cell Design, Efficiency, Definitions, Standards, and Protocols

  • Chapter
  • First Online:
Book cover Photoelectrochemical Solar Fuel Production

Abstract

This chapter serves as a reference for the basic design, testing, and efficiency definitions for photoelectrochemical (PEC) water-splitting cells. In particular, design principles and standards are given for PEC cells that utilize thin film semiconductor photoelectrodes, whose development and technological progress far exceeds those of other materials approaches. Different PEC device designs and operating principles are briefly discussed, which can be used for different material arrangements, architectures, and possible cell designs. In addition, practical techniques for benchmarking are presented to measure both device efficiencies and materials performance as a function of optical and electronic energy input. Standard protocols for these measurement techniques and necessary standardized equipment are also presented in the context of the fundamental information they can relate between performance and material/device limitations. Overall, a general overview of PEC cell requirements is given along with standard measurement techniques and efficiency definitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi FF, Han L, Smets AHM, Zeman M, Dam B, van de Krol R (2013) Efficient solar water splitting by enhanced charge separation in a bismuth vandate-silicon tandem photoelectrode. Nat Commun 4:2195

    Article  Google Scholar 

  • Appleby J, Delahoy AE, Gau SC, Murphy OJ, Bockris JOM (1985) An amorphous silicon-based one-unit photovoltaic electrolyzer. Energy 10:871

    Article  Google Scholar 

  • Arai T, Sato S, Kajino T, Morikawa T (2013) Solar CO2 reduction using H2O by a semiconductor/metal-complex hybrid photocatalyst: enhanced efficiency and demonstration of a wireless system using SrTiO3 photoanodes. Energ Environ Sci 6:1274

    Article  Google Scholar 

  • Arakawa H, Shiraishi C, Tatemoto M, Kishida H, Usui D, Suma A, Takamisawa A, Yamaguchi T (2007) Solar hydrogen production by tandem cell system composed of metal oxide semiconductor film photoelectrode and dye-sensitized solar cell. Proc SPIE 6650:665003

    Article  Google Scholar 

  • Bendert RM, Corrigan DA (1989) Effect of coprecipitated metal ions on the electrochemistry of nickel hydroxide thin films: cyclic voltammetry in 1M KOH. J Electrochem Soc 136:1369

    Article  Google Scholar 

  • Bornoz P, Abdi FF, Tilley SD, Dam B, van de Krol R, Graetzel M, Sivula K (2014) A bismuth vanadate-cuprous oxide tandem cell for overall solar water splitting. J Phys Chem C 118:16959

    Article  Google Scholar 

  • Brillet J, Yum J-H, Cornuz M, Hisatomi T, Solarska R, Augustynski J, Graetzel M, Sivula K (2012) Highly efficient water splitting by a dual-absorber tandem cell. Nat Photonics 6:824

    Article  Google Scholar 

  • Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2007) Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy Fuel 22:169

    Article  Google Scholar 

  • Chen S, Wang L-W (2012) Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem Mater 24:3659

    Article  Google Scholar 

  • Conell RS, Corrigan DA, Powell BR (1992) The electrochromic properties of sputtered nickel oxide films. Sol Energy Mater Sol Cells 25:301

    Article  Google Scholar 

  • Corrigan DA, Knight SL (1989) Electrochemical and spectroscopic evidence on the participation of quadrivalent nickel in the nickel in the nickel hydroxide redox reaction. J Electrochem Soc 136:613

    Article  Google Scholar 

  • Cox CR, Lee JZ, Nocera DG, Buonassisi T (2014) Ten percent solar-to-fuel conversion with nonprecious materials. Proc Natl Acad Sci U S A 111:14057

    Article  Google Scholar 

  • Digdaya IA, Han L, Buijs TWF, Zeman M, Dam B, Smets AHM, Smith WA (2015) Extracting large photovoltages from a-SiC photocathodes with an amorphous TiO2 front surface field layer for solar hydrogen evolution. Energ Environ Sci 8:1585

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  • Gaillard N, Chang Y, Kaneshiro J, Deangelis A, Miller EL (2010) Status of research on tungsten oxide-based photoelectrochemical devices at the University of Hawai’I. Proc SPIE 7770:77700V

    Article  Google Scholar 

  • Gillespie MI, van der Merwe F, Kriek RJ (2015) Performance evaluation of a membraneless divergent electrode-flow-through (DEFT) alkaline electrolyser based on optimisation of electrolytic flow and electrode gap. J Power Sources 293:228

    Article  Google Scholar 

  • Han L, Abdi FF, van de Krol R, Liu R, Huang Z, Lewrenz H-J, Dam B, Zeman M, Smets AHM (2014) Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells. ChemSusChem 7:2832

    Article  Google Scholar 

  • Hashemi SMH, Modestino MA, Psaltis D (2015) A membrane-less electrolyzer for hydrogen production across the pH scale. Energ Environ Sci 8:2003

    Article  Google Scholar 

  • Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis NS, Weber AZ (2012) Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energ Environ Sci 5:9922

    Article  Google Scholar 

  • Hernandez-Pagan EA, Vargas-Barbosa NM, Wang T, Zhao Y, Smotkin ES, Mallouk TE (2012) Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells. Energ Environ Sci 5:7582

    Article  Google Scholar 

  • Hickner MA, Ghassemi H, Kim YS, Einsla BR, McGrath JE (2004) Alternative polymer systems for proton exchange membranes (PEMs). Chem Rev 104:4587

    Article  Google Scholar 

  • Hickner MA, Herring AM, Coughlin EB (2013) Anion exchange membranes: current status and moving forward. J Poly Sci B: Polymer Phys 51:1727

    Article  Google Scholar 

  • Jacobsson TJ, Fjallstrom V, Edoff M, Edvinsson T (2015) A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production. Sol Energy Mater So Cells 138:86

    Article  Google Scholar 

  • James BD, Baum GN, Perez J, Baum KN (2009) Technoeconomic analysis of photoelectrochemical (PEC) hydrogen production. Directed Technologies Inc., Arlington, VA, US DOE Contract no GS-10F-009J

    Book  Google Scholar 

  • Kainthla RC, Zelenay B, Bockris JO’M (1987) Significant efficiency increase in self-driven photoelectrochemical cell for water photoelectrolysis. J Electrochem Soc 134:841

    Article  Google Scholar 

  • Khaselev O, Turner J (1998) A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280:425

    Article  Google Scholar 

  • Khaselev O, Bansal A, Turner J (2001) High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production. Int J Hydrogen Energ 26:127

    Article  Google Scholar 

  • Klahr B, Gimenez S, Fabregat-Santiago F, Hamann TW, Bisquert J (2012) Water oxidation at hematite photoelectrodes: The role of surface states. J Am Chem Soc 134:4294

    Article  Google Scholar 

  • Koper MTM (2011) Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J Electroanal Chem 660:254

    Article  Google Scholar 

  • Kuhl KP, Cave ER, Abram DN, Jaramillo TF (2012) New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energ Environ Sci 5:7050

    Article  Google Scholar 

  • Lewis NS, Nocera DG (2006) Powering the planet: Chemical challenges in solar energy utilization. Proc Natl Acad Sci U S A 103:15792

    Google Scholar 

  • Licht S, Wang B, Mukerji S, Soga T, Umeno M, Tributsch H (2001) Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int J Hydrogen Energ 26:653

    Article  Google Scholar 

  • Lin GH, Kapur M, Kainthla RC, Bockris JO’M (1989) One step method to produce hydrogen by a triple stack amorphous silicon solar cell. Appl Phys Lett 55:386

    Article  Google Scholar 

  • Luo J, Im J-H, Mayer MT, Schreier M, Nazeeruddin MK, Park N-G, Tilley SD, Fan HJ, Gratzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345:1593

    Article  Google Scholar 

  • McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977

    Article  Google Scholar 

  • McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137:4347

    Article  Google Scholar 

  • McDonald MB, Ardo S, Lewis NS, Freund MS (2014) Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. ChemSusChem 7:3021

    Article  Google Scholar 

  • McKone JR, Lewis NS, Gray HB (2014) Will solar-driven water-splitting devices see the light of day? Chem Mater 26:407

    Article  Google Scholar 

  • Miller EL, Paluselli D, Marsen B, Rocheleau RE (2005) Development of reactively sputtered metal oxide films for hydrogen-producing hybrid multijunction photoelectrodes. Sol Energy Mater Sol Cells 88:131

    Article  Google Scholar 

  • Mor GK, Varghese OK, Wilke RHT, Sharma S, Shankar K, LaTempa TJ, Choi K-S, Grimes CA (2008) p-tpye Cu-Ti-O nanotube arrays and their use in self-biased heterojunction photoelectrochemical diodes for hydrogen generation. Nano Lett 8:1906

    Article  Google Scholar 

  • Morisaki H, Watanabe T, Iwase M, Yazawa K (1976) Photoelectrolysis of water with TiO2-covered solar-cell electrodes. Appl Phys Lett 29:338

    Article  Google Scholar 

  • Nocera DG (2012) The artificial leaf. Acc Chem Res 45:767

    Article  MathSciNet  Google Scholar 

  • Nozik AJ (1976) p-n photoelectrolysis cells. Appl Phys Lett 29:150

    Article  Google Scholar 

  • Osterloh FE (2013) Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem Soc Rev 42:2294

    Article  Google Scholar 

  • Park JH, Bard AJ (2006) Photoelectrochemical tandem cell with bipolar dye-sensitized electrodes for vectorial electron transfer for water splitting. Electrochem Solid-State Lett 9, E5

    Article  Google Scholar 

  • Peckham TJ, Holdcroft S (2010) Structure-morphology-property relationships of non-perfluorinated proton-conducting membranes. Adv Mater 22:4660

    Article  Google Scholar 

  • Pinaud BA, Benck JD, Seitz LC, Forman AJ, Chen Z, Deutsch TG, James BD, Baum KV, Baum GN, Ardo S, Wang H, Miller E, Jaramillo TF (2013) Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energ Environ Sci 6:1983

    Article  Google Scholar 

  • Reece SY, Hamel JA, Sung K, Jarvi TD, Esswein AJ, Pijpers JJH, Nocera DG (2011) Wireless solar water splitting using solicon-based semiconductors and earth-abundant catalysts. Science 334:645

    Article  Google Scholar 

  • Rocheleau RE, Miller EL, Misra A (1998) High-efficiency photoelectrochemical hydrogen production using multijuntion amorphous silicon photoelectrodes. Energy Fuel 12:3

    Article  Google Scholar 

  • Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Norskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83

    Article  Google Scholar 

  • Roy SC, Varghese OK, Paulose M, Grimes CA (2010) Towards solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons. ACS Nano 4:1259

    Article  Google Scholar 

  • Sakai Y, Sugahara S, Matsumura M, Nakato Y, Tsubomura H (1988) Photoelectrochemical water splitting by tandem type and heterojunction amorphous silicon electrodes. Can J Chem 66:1853

    Article  Google Scholar 

  • Sathre R, Scown CD, Morrow WR III, Stevens JC, Sharp ID, Ager JW III, Walczak K, Houle FA, Greenblatt JB (2014) Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energ Environ Sci 7:3264

    Article  Google Scholar 

  • Sato S, Arai T, Morikawa T, Uemura K, Suzuki TM, Tanaka H, Kajino T (2011) Selective CO2 conversion to formate conjugated with H2O oxidation utilizing semiconductor/complex hybrid photocatalysts. J Am Chem Soc 133:15240

    Article  Google Scholar 

  • Seger B, Castelli IE, Vesborg PCK, Jacobsen KW, Hansen O, Chorlendorff I (2014) 2-Photon tandem davice for water splitting: comparing photocathode first versus photoanode first designs. Energ Environ Sci 7:2397

    Article  Google Scholar 

  • Simons R (1993) Preparation of a high performance bipolar membrane. J Membrane Sci 78:13

    Article  Google Scholar 

  • Trotochaud L, Mills TJ, Boettcher SW (2013) An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. J Phys Chem Lett 4:931

    Article  Google Scholar 

  • van de Krol R (2012) in Photoelectrochemical Hydrogen Production ed. by R. van de Krol and M. Grätzel and. Springer, Berlin, p 73

    Book  Google Scholar 

  • Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K (2014) Anion-exchange membranes in electrochemical energy systems. Energ Environ Sci 7:3135

    Article  Google Scholar 

  • Vargas-Barbosa NM, Geise GM, Hickner MA, Mallouk TE (2014) Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem 7:3017

    Article  Google Scholar 

  • Vermaas DA, Sassenberg M, Smith WA (2015) Photo-assisted water splitting with bipolar membrane induced pH gradients for practical solar fuel devices. J Mater Chem A 3:19556–19562

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges Bartek J. Trzesniewski, Ibadillah A. Digdaya and Fatwa F. Abdi for assistance with several of the figures, Dr. David Vermaas for contributions to the membrane section, and the MECS group at TU Delft for helpful discussions. The author is also very grateful for generous funding from Towards BioSolarCells (grant FOM 03), the NWO VENI scheme, and the CO2-neutral Fuel program of NWO/FOM/Shell (project APPEL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilson A. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Smith, W.A. (2016). Photoelectrochemical Cell Design, Efficiency, Definitions, Standards, and Protocols. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics