Skip to main content

Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices

  • Chapter
  • First Online:

Abstract

As in natural photosynthesis, artificial photosynthesis integrates solar energy conversion and storage in processes that produce solar fuels. The targets are water splitting into H2 and O2 or solar-driven reduction of CO2 by water to carbon-based fuels. The dye sensitized photoelectrosynthesis cell (DSPEC) offers a hybrid approach. It combines molecular-level light absorption and catalysis with the high energy bandgap properties of n-type (TiO2, SnO2) or p-type (NiO) semiconductor oxides. The DSPEC functions as an artificial leaf by using molecular assemblies that both absorb light and catalyze water oxidation at a photoanode or proton/CO2 reduction at a photocathode. It draws on research on dye-sensitized solar cells (DSSCs) and advances in molecular light-harvesting and catalysis to address the more complex set of challenges arising from coupling single photon/single electron absorption/injection events with multi-electron/multi-proton half-reactions for water oxidation and CO2 reduction. This account provides a summary of DSPEC research at the University of North Carolina Energy Frontier research Center on Solar Fuels. By using a team-based approach, the Center has made significant progress in research on molecular assemblies, catalysis of water oxidation and CO2 reduction, understanding and controlling interfacial electron transfer dynamics, the use of semiconductor oxides, and surface assembly and stabilization, all of which are integrated in DSPEC photoanodes for water oxidation and photocathodes for water and CO2 reduction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alibabaei L, Brennaman M, Norris M, Kalanyan B, Song W, Losego M, Concepcion J, Binstead R, Parsons G, Meyer T (2013) Solar water splitting in a molecular photoelectrochemical cell. Proc Natl Acad Sci U S A 110:20008

    Article  Google Scholar 

  • Alibabaei L, Farnum B, Kalanyan B, Brennaman M, Losego M, Parsons G, Meyer T (2014) Atomic layer deposition of TiO2 on mesoporous nanoITO: conductive core-shell photoanodes for dye-sensitized solar cells. Nano Lett 14:3255

    Article  Google Scholar 

  • Ardo S, Meyer G (2009) Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem Soc Rev 38:115

    Article  Google Scholar 

  • Ashford D, Stewart D, Glasson C, Binstead R, Harrison D, Norris M, Concepcion J, Fang Z, Templeton J, Meyer T (2012a) An amide-linked chromophore-catalyst assembly for water oxidation. Inorg Chem 51:6428

    Article  Google Scholar 

  • Ashford D, Song W, Concepcion J, Glasson C, Brennaman M, Norris M, Fang Z, Templeton J, Meyer T (2012b) Photoinduced electron transfer in a chromophore-catalyst assembly anchored to TiO2. J Am Chem Soc 134:19189

    Article  Google Scholar 

  • Ashford D, Lapides A, Vannucci A, Hanson K, Torelli D, Harrison D, Templeton J, Meyer T (2014) Water oxidation by an electropolymerized catalyst on derivatized mesoporous metal oxide electrodes. J Am Chem Soc 136:6578

    Article  Google Scholar 

  • Ashford D, Sherman B, Binstead R, Templeton J, Meyer T (2015) Electro-assembly of a chromophore-catalyst bilayer for water oxidation and photocatalytic water splitting. Angew Chem Int Ed 54:4778

    Article  Google Scholar 

  • Ashmawy F, McAuliffe C, Parish R, Tames J (1985) Water photolysis. Part 1. the photolysis of co-ordinated water in [{MnL-(H2O)}2][CIO4]2 (L=Dianion of Tetradentate O2N2-Donor Schiff Bases). A model for the manganese site in photosystem II of green plant photosynthesis. J Chem Soc Dalton Trans 1985:1391

    Article  Google Scholar 

  • Barnett S, Goldberg K, Mayer J (2012) A soluble copper–bipyridine water-oxidation electrocatalyst. Nat Chem 4:498

    Article  Google Scholar 

  • Barton C, Lakkaraju P, Rampulla D, Morris A, Abelev E, Bocarsly A (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539

    Article  Google Scholar 

  • Bettis S, Hanson K, Wang L, Gish M, Concepcion J, Fang Z, Meyer T, Papanikolas J (2014) Photophysical characterization of a chromophore/water oxidation catalyst containing a layer-by-layer assembly on nanocrystalline TiO2 using ultrafast spectroscopy. J Phys Chem A 118:10301

    Article  Google Scholar 

  • Binstead R, McGuire M, Dovletoglou A, Seok W, Roecker L, Meyer T (1992) Oxidation of hydroquinones by [(bpy)2(py)RuIV(O)]2+ and [(bpy)2(py)RuIII(OH)]2+. Proton-coupled electron transfer. J Am Chem Soc 114:173

    Article  Google Scholar 

  • Bock C, Meyer T, Whitten D (1974) Electron transfer quenching of the luminescent excited state of Tris(2,2′-bipyri¬dine)ruthenium(II). A flash photolysis relaxation technique for measuring the rates of very rapid electron transfer reactions. J Am Chem Soc 96:4710

    Article  Google Scholar 

  • Chen Z, Concepcion J, Jurss J, Meyer T (2009) Single-site, catalytic water oxidation on oxide surfaces. J Am Chem Soc 131:15580

    Article  Google Scholar 

  • Chen Z, Concepcion J, Hu X, Yang W, Hoertz P, Meyer T (2010a) Concerted O atom-proton transfer in the O---O bond forming step of water oxidation. Proc Natl Acad Sci U S A 107:7225

    Article  Google Scholar 

  • Chen Z, Concepcion J, Hull J, Hoertz P, Meyer T (2010b) Catalytic water oxidation on derivatized nanoITO. Dalton Trans 39:6950

    Article  Google Scholar 

  • Chen Z, Concepcion J, Luo H, Hull J, Paul A, Meyer T (2010c) Nonaqueous catalytic water oxidation. J Am Chem Soc 132:17670

    Article  Google Scholar 

  • Chen Z, Concepcion J, Meyer T (2011a) Rapid catalytic water oxidation by a single site, Ru carbene catalyst. Dalton Trans 40:3789

    Article  Google Scholar 

  • Chen Z, Vannucci A, Concepcion J, Jurss J, Meyer T (2011b) Electrocatalytic reduction of CO2 to CO by polypyridyl ruthenium complexes. Proc Natl Acad Sci U S A 108:1461

    Article  Google Scholar 

  • Chen Z, Chen C, Weinberg D, Weinberg D, Kang P, Concepcion J, Harrison D, Brookhart M, Meyer T (2011c) Chem Commun 47:12607

    Article  Google Scholar 

  • Chen Z, Kang P, Zhang M-T, Stoner B, Meyer T (2013) Cu(II)/Cu(0) electrocatalyzed CO2 and H2O splitting. Energ Environ Sci 6:813

    Article  Google Scholar 

  • Clifford J, Martinez-Ferrero E, Viterisi A, Palomares E (2011) Sensitizer molecular structure-device efficiency relationship in dye sensitized solar cells. Chem Sci Rev 40:1635

    Article  Google Scholar 

  • Coggins M, Zhang M-T, Vannucci A, Dares C, Meyer T (2014a) Electrocatalytic water oxidation by an amidate-ligated Fe(III)-aqua complex. J Am Chem Soc 136:5531

    Article  Google Scholar 

  • Coggins M, Zhang M-T, Chen Z, Song N, Meyer T (2014b) Single-site CuII water oxidation electrocatalysis. Rate enhancements with HPO4 2- as a proton acceptor at pH8**. Angew Chem Int Ed 53:12226

    Article  Google Scholar 

  • Concepcion J, Jurss J, Hoertz P, Meyer T (2009) Catalytic and surface-electrocatalytic water oxidation by redox mediator–catalyst assemblies. Angew Chem Int Ed 48:9473

    Article  Google Scholar 

  • Concepcion J, Tsai M-K, Muckerman J, Meyer T (2010a) Mechanism of water oxidation by single-site ruthenium complex catalysts. J Am Chem Soc 132:1545

    Article  Google Scholar 

  • Concepcion J, Jurss J, Norris M, Chen Z, Templeton J, Meyer T (2010b) Catalytic water oxidation by single site ruthenium catalysts. Inorg Chem 49:1277

    Article  Google Scholar 

  • Duan L, Bozoglian F, Mandal S, Stewart B, Privalov T, Llobet A, Sun L (2012) A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat Chem 4:418

    Article  Google Scholar 

  • Durrant J, Haque S, Palomares E (2004) Towards optimisation of electron transfer processes in dye sensitised solar cells. Coord Chem Res 248:1247

    Article  Google Scholar 

  • Dwyer F, Gyarfas E, Rogers W, Koch J (1952) Biological activity of complex ions. Nature 170:190

    Article  Google Scholar 

  • Ellis W, McDaniel N, Bernhard S, Collins T (2010) Fast water oxidation using iron. J Am Chem Soc 132:10990

    Article  Google Scholar 

  • Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37

    Article  Google Scholar 

  • Gagliardi C, Vannucci A, Concepcion J, Chen Z, Meyer T (2012) The role of proton coupled electron transfer in water oxidation. Energ Environ Sci 5:7704

    Article  Google Scholar 

  • Gao Y, Ding X, Liu J, Wang L, Lu Z, Li L, Sun L (2013) Visible light driven water splitting in a molecular device with unprecedentedly high photocurrent density. J Am Chem Soc 135:4219

    Article  Google Scholar 

  • Gersten S, Samuels G, Meyer T (1982) Catalytic oxidation of water by an oxo-bridged ruthenium dimer. J Am Chem Soc 104:4029

    Article  Google Scholar 

  • Gilbert J, Egglesteon D, Murphy W, Geselowitz D, Gersten S, Hodgson D, Meyer T (1985) Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuORu(OH2)(bpy)2]4+. J Am Chem Soc 107:3855

    Article  Google Scholar 

  • Glasson C, Song W, Ashford D, Vannucci A, Chen Z, Concepcion J, Holland P, Meyer T (2012) Self-assembled bilayers on indium-tin oxide (SAB-ITO) electrodes: a design for chromophore-catalyst photoanodes. Inorg Chem 51:8637

    Article  Google Scholar 

  • Gratzel M (2009) Recent advances in sensitized mesoscopic solar cells. Acc Chem Res 42:1788

    Article  Google Scholar 

  • Hanson K, Torelli D, Vannucci A, Brennaman M, Luo H, Alibabaei L, Song W, Ashford D, Norris M, Glasson C, Concepcion J, Meyer T (2012) Self-assembled bilayer films of Ru(II) polypyridyl complexes by layer-by-layer deposition on nanostructured metal oxides. Angew Chem Int Ed 51:12782

    Article  Google Scholar 

  • Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O8 2–. J Am Chem Soc 134:19572

    Article  Google Scholar 

  • Hurst J (2005) Water oxidation catalyzed by dimeric μ-oxo bridged ruthenium diimine complexes. Coord Chem Rev 249:313

    Article  Google Scholar 

  • Hurst J, Zhou J, Lei Y (1992) Pathways for water oxidation catalyzed by the (.mu.-oxo)bis[aquabis(bipyridine)ruthenium](4+) ion. Inorg Chem 31:1010

    Article  Google Scholar 

  • Ishida T, Terada K-I, Hasegawa K, Kuwahata H, Kusama K, Sato R, Nakano M, Haga M-A (2009) Self-assembled monolayer and multilayer formation using redox-active Ru complex with phosphonic acids on silicon oxide surface. Appl Surf Sci 255:8824

    Article  Google Scholar 

  • Kang P, Cheng C, Chen Z, Schauer C, Meyer T, Brookhart M (2012) Selective electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complexes. J Am Chem Soc 134:5500

    Article  Google Scholar 

  • Kang P, Meyer T, Brookhart M (2013) Selective electrocatalytic reduction of carbon dioxide to formate by a water-soluble iridium pincer catalyst. Chem Sci 4:3497

    Article  Google Scholar 

  • Kang P, Zhang S, Meyer T, Brookhart M (2014a) Rapid, selective electrocatalytic reduction of carbon dioxide to formate by an iridium pincer catalyst immobilized on carbon nanotube electrodes. Angew Chem Int Ed 53:8709

    Article  Google Scholar 

  • Kang P, Chen Z, Nayak A, Zhang S, Meyer T (2014b) Single catalyst electrocatalytic reduction of CO2 in water to H2+CO syngas mixtures with water oxidation to O2. Energ Environ Sci 7:4007

    Article  Google Scholar 

  • Kim D, Losego M, Hanson K, Alibabaei L, Lee K, Meyer T, Parsons G (2014) Stabilizing chromophore binding on TiO2 for long-term stability of dye-sensitized solar cells using multicomponent atomic layer deposition. Phys Chem Chem Phys 16:8615

    Article  Google Scholar 

  • Lapides A, Ashford D, Hanson K, Torelli D, Templeton J, Meyer T (2013) Stabilization of a ruthenium(II) polypyridyl dye on nanocrystalline TiO2 by an electropolymerized overlayer. J Am Chem Soc 135:15440

    Article  Google Scholar 

  • Lee H, Kepley L, Hong H, Mallouk T (1988) Inorganic analogs of Langmuir-Blodgett films: adsorption of ordered zirconium 1,10-decanebisphosphonate multilayers on silicon surfaces. J Am Chem Soc 110:618

    Article  Google Scholar 

  • Leem G, Morseth Z, Puodziukynaite E, Jiang J, Fang Z, Gilligan A, Reynolds J, Papanikolas J, Schanze K (2014) Light harvesting and charge separation in a π-conjugated antenna polymer bound to TiO2. J Phys Chem C 118:28535

    Article  Google Scholar 

  • Limburg J, Vrettos J, Liable-Sands L, Rheingold A, Crabtree R, Brudvig G (1999) A functional model for O-O bond formation by the O2-evolving complex in photosystem II. Science 283:1524

    Article  Google Scholar 

  • Liu F, Concepcion J, Jurss J, Cardolaccia T, Templeton J, Meyer T (2008) Mechanisms of water oxidation from the blue dimer to photosystem II. Inorg Chem 47:1727

    Article  Google Scholar 

  • Machan C, Chabolla S, Yin J, Gilson M, Tezcan F, Kubiak D (2014) Supramolecular assembly promotes the electrocatalytic reduction of carbon dioxide by Re(I) bipyridine catalysts at a lower overpotential. J Am Chem Soc 136:14598

    Article  Google Scholar 

  • Merrifield B (1986) Solid physe synthesis. Science 232:341

    Article  Google Scholar 

  • Meyer T (1990) Intramolecular control of excited state electron and energy electron transfer. Pure Appl Chem 62:1003

    Article  Google Scholar 

  • Meyer T, Huynh M (2003) The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes. Inorg Chem 42:8140

    Article  Google Scholar 

  • Moyer B, Meyer T (1978) Oxobis(2,2′-bipyridine)pyridineruthenium(IV) Ion, [(bpy)2(py)Ru=O]2. J Am Chem Soc 100:3601

    Article  Google Scholar 

  • Nayak A, Knauf R, Hanson K, Alibabaei L, Concepcion J, Ashford D, Dempsey J, Meyer T (2014) Synthesis and photophysical characterization of a porphyrin-Ru(II) polypyridyle chromophore catalyst assembly on mesoporous metal oxides. Chem Sci 5:3115

    Article  Google Scholar 

  • Norris M, Concepcion J, Harrison D, Binstead R, Ashford D, Fang Z, Templeton J, Meyer T (2013) Redox mediator effect on water oxidation in a ruthenium based chromophore-catalyst assembly. Am Chem Soc 135:2080

    Article  Google Scholar 

  • O’Regan B, Durrant J (2009) Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc Chem Res 42:1799

    Article  Google Scholar 

  • O’Regan B, Gratzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737

    Article  Google Scholar 

  • Puodziukynaite E, Wang L, Schanze K, Papanikolas J, Reynolds J (2014) Poly(fluorene-co-thiophene)-based ionic transition-metal complex polymers for solar energy harvesting and storage applications. Polym Chem 5:2363

    Article  Google Scholar 

  • Renger G, Renger T (2008) Photosystem II: the machinery of photosynthetic water splitting. Photosynth Res 98:53

    Article  Google Scholar 

  • Ryan D, Coggins M, Concepcion J, Ashford D, Fang Z, Alibabaei L, Ma D, Meyer T, Waters M (2014) Synthesis and electrocatalytic water oxidation by electrode-bound helical peptide chromophore-catalyst assemblies. Inorg Chem 53:8120

    Article  Google Scholar 

  • Song W, Chen Z, Brennaman M, Concepcion J, Patrocinio A, Iha N, Meyer T (2011) Making solar fuels by artificial photosynthesis. Pure Appl Chem 83:749

    Article  Google Scholar 

  • Song W, Ito A, Binstead R, Hanson K, Luo H, Brennaman M, Concepcion J, Meyer T (2013) Accumulation of multiple oxidative equivalents at a single site by cross-surface electron transfer on TiO2. J Am Chem Soc 135:11587

    Article  Google Scholar 

  • Song N, Concepcion J, Binstead R, Rudd J, Vannucci A, Dares C, Coggins M, Meyer T (2015) Base enhanced catalytic water oxidation by a carboxylate-bipyridine Ru(II) complex. Proc Natl Acad Sci U S A 112:4935

    Article  Google Scholar 

  • Tamaki Y, Koike K, Morimoto T, Yamazaki Y, Ishitani O (2013) Red-light-driven photocatalytic reduction of CO2 using Os(II)−Re(I) supramolecular complexes. Inorg Chem 52:11902

    Article  Google Scholar 

  • Tamaki Y, Vannucci A, Dares C, Binstead R, Meyer T (2014) One-electron activation of water oxidation catalysis. J Am Chem Soc 136:6854

    Article  Google Scholar 

  • Vannucci A, Alibabaei L, Losego M, Concepcion J, Kalanyan B, Parsons G, Meyer T (2013) Crossing the divide between homogeneous and heterogeneous catalysis in water oxidation. Proc Natl Acad Sci U S A 110:20919

    Article  Google Scholar 

  • Wang D, Groves J (2013) Efficient water oxidation catalyzed by homogeneous cationic cobalt porphyrins with critical roles for the buffer base. Proc Natl Acad Sci U S A 110:15579

    Article  Google Scholar 

  • Wang D, Ghirlanda G, Allen J (2014) Water oxidation by a nickel-glycine catalyst. J Am Chem Soc 136:10198

    Article  Google Scholar 

  • Wasylenko D, Ganesamoorthy C, Borau-Garcia J, Berlinguette C (2011) Electrochemical evidence for catalyticwater oxidation mediated by a high-valent cobalt complex. Chem Commun 47:4249

    Article  Google Scholar 

  • Wasylenko D, Tatlock H, Bhandari L, Gardinier J, Berlinguette C (2013) Proton-coupled electron transfer at a [Co-OH x ]z unit in aqueous media: evidence for a concerted mechanism. Chem Sci 4:734

    Article  Google Scholar 

  • Wee K, Brennaman M, Alibabaei L, Farnum B, Sherman S, Lapides A, Meyer T (2014) Water oxidation by an electropolymerized catalyst on derivatized mesoporous metal oxide electrodes. J Am Chem Soc 136:13514

    Article  Google Scholar 

  • Weinbert D, Gagliardi C, Hull J, Murphy C, Kent C, Westlake B, Paul A, Ess D, McCafferty D, Meyer T (2012) Proton-coupled electron transfer. Chem Rev 112:4016

    Article  Google Scholar 

  • Yang Y, Zeitler E, Gu J, Hu Y, Bocarsly A (2013) Electrochemistry of aqueous pyridinium: exploration of a key aspect of electrocatalytic reduction of CO2 to methanol. J Am Chem Soc 135:14020

    Article  Google Scholar 

  • Young R, Meyer T, Whitten D (1976) Electron transfer quenching of excited states of metal complexes. J Am Chem Soc 98:286

    Article  Google Scholar 

  • Young K, Takase M, Brudvig G (2013) An anionic N-donor ligand promotes manganese-catalyzed water oxidation. Inorg Chem 52:7615

    Article  Google Scholar 

  • Zhang Q, Cao C (2011) Nanostructured photoelectrodes for dye-sensitized solar cells. Nano Today 6:91

    Article  Google Scholar 

  • Zhang S, Yang X, Numata Y, Han L (2013a) Highly efficient dye-sensitized solar cells: progress and future challenges. Energ Environ Sci 6:1443

    Article  Google Scholar 

  • Zhang M-T, Chen Z, Kang P, Meyer T (2013b) Electrocatalytic water oxidation with a copper(II) polypeptide complex. J Am Chem Soc 135:2048

    Article  Google Scholar 

  • Zhao Y, Swiek J, Megiatoo J Jr, Sherman B, Youngblood W, Qin D, Lentz D, Moore A, Moore T, Gust D, Mallouk T (2012) Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator. Proc Natl Acad Sci U S A 109:15612

    Article  Google Scholar 

  • Zong R, Thummel R (2005) A new family of Ru complexes for water oxidation. J Am Chem Soc 127:12802

    Article  Google Scholar 

Download references

Acknowledgments

Funding by the UNC EFRC Center for Solar Fuels, an EFRC funded by the US DOE, Office of Science, Office of Basic energy Sciences, under award number DE-SC0001011 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coggins, M.K., Meyer, T.J. (2016). Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: From Basic Science to Prototype Devices. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics