Skip to main content

Semiconductor Electrochemistry

  • Chapter
  • First Online:

Abstract

The properties of the semiconductor/electrolyte interface are reviewed with emphasis on basic physical principles and on electrode reactions taking place at the illuminated semiconductor electrolyte junction, since these are important in the context of photoelectrochemical solar cells and photoelectrolysis devices. The thermodynamic and kinetic factors that govern photoelectrochemical reactions are outlined, and the extension of basic theoretical concepts to nanostructured semiconductor electrodes is discussed in order to show how some ideas may need to be modified to take into account the size-dependent properties of systems with small-length scales.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albery WJ, Bartlett PN (1984) The transport and kinetics of photogenerated carriers in colloidal semiconductor electrode particles. J Electrochem Soc 131:315–325

    Article  Google Scholar 

  • Allongue P, Cachet H (1985) Band-edge shift and surface-charges at illuminated n-GaAs aqueous electrolyte junctions. Surface state analysis and simulation of their occupation rate. J Electrochem Soc 132:45–52

    Article  Google Scholar 

  • Bard AJ (1980) Photoelectrochemistry. Science 207:139–144

    Article  Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. John Wiley and Sons Inc, New York

    Google Scholar 

  • Bisquert J (2008) Physical electrochemistry of nanostructured devices. Phys Chem Chem Phys 10:49–72

    Article  Google Scholar 

  • Bisquert J, Garcia-Belmonte G, Fabregat-Santiago F (1999) Modelling the electric potential distribution in the dark in nanoporous semiconductor electrodes. J Solid State Electrochem 3:337–347

    Article  Google Scholar 

  • Boschloo G, Fitzmaurice D (1997) Electron accumulation in nanoporous-nanocrystalline TiO2 electrodes. Proc Symp Photoelectrochem 97:84–87

    Google Scholar 

  • Boschloo G, Fitzmaurice D (1999) Electron accumulation in nanostructured TiO2 (anatase) electrodes. J Phys Chem B 103:7860–7868

    Article  Google Scholar 

  • Brattain WH, Garrett CGB (1955) Experiments on the interface between Germanium and an electrolyte. Bell Syst Tech J 34:129–176

    Article  Google Scholar 

  • Brillet J, Grätzel M, Sivula K (2010) Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett 10:4155–4160

    Article  Google Scholar 

  • Butler MA (1977) Photoelectrolysis and physical properties of semiconducting electrode WO3. J Appl Phys 48:1914–1920

    Article  Google Scholar 

  • Cass MJ, Duffy NW, Peter LM, Pennock SR, Ushiroda S, Walker AB (2003a) Microwave reflectance studies of photoelectrochemical kinetics at semiconductor electrodes. 1. Steady-state, transient, and periodic responses. J Phys Chem B 107:5857–5863

    Article  Google Scholar 

  • Cass MJ, Duffy NW, Peter LM, Pennock SR, Ushiroda S, Walker AB (2003b) Microwave reflectance studies of photoelectrochemical kinetics at semiconductor electrodes. 2. Hydrogen evolution at p-Si in ammonium fluoride solution. J Phys Chem B 107:5864–5870

    Article  Google Scholar 

  • Cendula P, Tilley SD, Gimenez S, Bisquert J, Schmid M, Grätzel M, Schumacher JO (2014) Calculation of the energy band diagram of a photoelectrochemical water splitting cell. J Phys Chem C 118:29599–29607

    Article  Google Scholar 

  • Cesar I, Sivula K, Kay A, Zboril R, Graetzel M (2009) Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J Phys Chem C 113:772–782

    Article  Google Scholar 

  • Degryse R, Gomes WP, Cardon F, Vennik J (1975) Interpretation of Mott-Schottky plots determined at semiconductor-electrolyte systems. J Electrochem Soc 122:711–712

    Article  Google Scholar 

  • Dewald JF (1960) The charge distribution at the Zinc Oxide-electrlolite interface. J Phys Chem Solids 14:155–161

    Article  Google Scholar 

  • Dloczik L, Ileperuma O, Lauermann I, Peter LM, Ponomarev EA, Redmond G, Shaw NJ, Uhlendorf I (1997) Dynamic response of dye-sensitized nanocrystalline solar cells: characterization by intensity-modulated photocurrent spectroscopy. J Phys Chem B 101:10281–10289

    Article  Google Scholar 

  • Dunn HK, Peter LM (2009) How efficient is electron collection in dye-sensitized solar cells? Comparison of different dynamic methods for the determination of the electron diffusion length. J Phys Chem C 113:4726–4731

    Article  Google Scholar 

  • Feng Z, Tsu R (1997) Porous silicon. World Scientific, Singapore

    Google Scholar 

  • Fermin DJ, Ponomarev EA, Peter LM (1999) A kinetic study of CdS photocorrosion by intensity modulated photocurrent and photoelectrochemical impedance spectroscopy. J Electroanal Chem 473:192–203

    Article  Google Scholar 

  • Fisher AC, Peter LM, Ponomarev EA, Walker AB, Wijayantha KGU (2000) Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells. J Phys Chem B 104:949–958

    Article  Google Scholar 

  • Gärtner WW (1959) Depletion layer photoeffects in semiconductors. Phys Rev 116:84–87

    Article  Google Scholar 

  • Gerischer H (1961) Advances in electrochemistry and electrochemical engineering, vol 1. Interscience, New York

    Google Scholar 

  • Gerischer H (1989) Neglected problems in the pH-dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers. Electrochim Acta 34:1005–1009

    Article  Google Scholar 

  • Kosmulski M (2009) Compilation of PZC and IEP of sparingly soluble metal oxides and hydroxides from literature. Adv Colloid Interf Sci 152:14–25

    Article  Google Scholar 

  • Kumar A, Santangelo PG, Lewis NS (1992) Electrolysis of water at SrTiO3 PHOTOELECTRODES - Distinguishing between statistical and stochastic formalisms for electro transfer processes in fuel forming photoelectrochemical systems. J Phys Chem 96:834–842

    Article  Google Scholar 

  • Landsberg PT (1991) Recombination in semiconductors. Cambridge University Press, Cambridge

    Google Scholar 

  • Letaw H, Bardeen J (1954) Electrolytic analog transistor. J Appl Phys 25:600–606

    Article  Google Scholar 

  • Li J, Peat R, Peter LM (1984) Surface recombination at semiconductor electrodes. 2. Photoinduced near-surface recombination centers in p-GaP. J Electroanal Chem 165:41–59

    Article  Google Scholar 

  • Li J, Peter LM (1985) Surface recombination at semiconductor electrodes. 3. Steady-State and Intensity modulated photocurrent response. J Electroanal Chem 193:27–47

    Article  Google Scholar 

  • Li J, Peter LM (1986) Surface recombination at semiconductor electrodes. 4. Steady-state and intensity modulated photocurrents at normal GaAs electrodes. J Electroanal Chem 199:1–26

    Article  Google Scholar 

  • Licht S, Bard AJ, Stratmann M (2002) Encyclopedia of electrochemistry: semiconductor electrodes and photoeletrochemistry, vol 6. Wiley-VCH, Weinheim

    Google Scholar 

  • Marcus RA (1964) Chemical + electrochemical electron transfer theory. Annu Rev Phys Chem 15:155–196

    Article  Google Scholar 

  • Memming R (1978) Top current chemistry. Springer, New York

    Google Scholar 

  • Memming R (2015) Semiconductor electrochemistry. Wiley VCH, Weinheim

    Book  Google Scholar 

  • Morrison SR (1980) Electrochemistry of semiconductor and metal electrodes. Plenum Press, New York

    Book  Google Scholar 

  • Nozik AJ (1978) Photoelectrochemistry. Applications to solar energy conversion. Annu Rev Phys Chem 29:189–222

    Article  Google Scholar 

  • Oregan B, Grätzel M (1991) A low-cost, higher efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  • Peat R, Peter LM (1987) Intensity modulated photocurrent spectroscopy of n-GaAs. Berichte Der Bunsen-Gesellschaft Phys Chem Chem Phys 91:381–386

    Article  Google Scholar 

  • Peter LM (2007a) Characterization and modeling of dye-sensitized solar cells. J Phys Chem C 111:6601–6612

    Article  Google Scholar 

  • Peter LM (2007b) Dye-sensitized nanocrystalline solar cells. Phys Chem Chem Phys 9:2630–2642

    Article  Google Scholar 

  • Peter LM (2011) The Grätzel cell: where next? J Phys Chem Lett 2:1861–1867

    Article  Google Scholar 

  • Peter LM (2013) Energetics and kinetics of light-driven oxygen evolution at semiconductor electrodes: the example of hematite. J Solid State Electrochem 17:315–326

    Article  MathSciNet  Google Scholar 

  • Peter LM, Li J, Peat R (1984) Surface recombination at semiconductor electrodes. 1. Transient and steady-state photocurrents. J Electroanal Chem 165:29–40

    Article  Google Scholar 

  • Peter LM, Ponomarev EA, Fermin DJ (1997) Intensity-modulated photocurrent spectroscopy: reconciliation of phenomenological analysis with multistep electron transfer mechanisms. J Electroanal Chem 427:79–96

    Article  Google Scholar 

  • Peter LM, Tributsch H (2008) Nanostructured and photoelectrochemical systems for solar photon conversion, vol 3. Imperial College Press, London

    Book  Google Scholar 

  • Peter LM, Vanmaekelbergh D (1999) Time and frequency resolved studies of photoelectrochemical kinetics. In: Alkire RC, Kolb DM (eds) Advances in electrochemical science and engineering, vol 6. Wiley-VCH, Weinheim, pp 77–164

    Chapter  Google Scholar 

  • Peter LM, Wijayantha KGU, Tahir AA (2012) Kinetics of light-driven oxygen evolution at alpha-Fe2O3 electrodes. Faraday Discuss 155:309–322

    Article  Google Scholar 

  • Pleskov IV, Gurevich YY (1986) Semiconductor electrochemistry. Consultants Bureau, New York

    Book  Google Scholar 

  • Ponomarev EA, Peter LM (1995a) A comparison of intensity modulated photocurrent spectroscopy and photoelectrochemical impedance spectroscopy in a study of photoelectrochemical hydrogen evolution at p-InP. J Electroanal Chem 397:45–52

    Article  Google Scholar 

  • Ponomarev EA, Peter LM (1995b) A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). J Electroanal Chem 396:219–226

    Article  Google Scholar 

  • Reichman J (1980) The current-voltage characteristics of semiconductor-electrolyte junction photovoltaic cells. Appl Phys Lett 36:574–577

    Article  Google Scholar 

  • Reineke R, Memming R (1992a) Comparability of redox reactions at n-type and p-type semiconductor electrodes. 1. The quasi Fermi level concept. J Phys Chem 96:1310–1317

    Article  Google Scholar 

  • Reineke R, Memming R (1992b) Comparability of redox reactions at n-type and p-type semiconductor electrodes. 2. Electrochemical overpotential and recombination in view of the quasi Fermi level concept. J Phys Chem 96:1317–1323

    Article  Google Scholar 

  • Royea WJ, Fajardo AM, Lewis NS (1997) Fermi golden rule approach to evaluating outer-sphere electron-transfer rate constants at semiconductor/liquid interfaces. J Phys Chem B 101:11152–11159

    Article  Google Scholar 

  • Sailor M (2011) Porous silicon in practice. Wiley-VCH Verlag GmbH & Co, Weinheim

    Book  Google Scholar 

  • Salvador P (2001) Semiconductors’ photoelectrochemistry: a kinetic and thermodynamic analysis in the light of equilibrium and nonequilibrium models. J Phys Chem B 105:6128–6141

    Article  Google Scholar 

  • Sato N (1998) Electrochemistry at metal and semiconductor electrodes. Elsevier, Amsterdam

    Google Scholar 

  • Schlichthörl G, Ponomarev EA, Peter LM (1995) An investigation of hydrogen evolution at p-Si by intensity modulated photocurrent spectroscopy and photomodulated microwave reflectivity. J Electrochem Soc 142:3062–3067

    Article  Google Scholar 

  • Sze SM (1981) Physics of semiconductor devices. John Wiley & Sons Inc, New York

    Google Scholar 

  • Tena-Zaera R, Elias J, Levy-Clement C, Bekeny C, Voss T, Mora-Sero I, Bisquert J (2008) Influence of the potassium chloride concentration on the physical properties of electrodeposited ZnO nanowire arrays. J Phys Chem C 112:16318–16323

    Article  Google Scholar 

  • Trasatti S (1986) The absolute electrode potential. An explanatory note (recommendations 1986). Pure Appl Chem 58:955–966

    Google Scholar 

  • Vanmaekelbergh D, Marin FI, van De Lagemaat J (1996) Transport of photogenerated charge carriers through crystalline GaP networks investigated by intensity modulated photocurrent spectroscopy. Berichte Der Bunsen-Gesellschaft Phys Chem Chem Phys 100:616–626

    Article  Google Scholar 

  • Würfel P, Würfel U (2009) Physics of solar cells. From basic principles to advanced concepts. Wiley, Weinheim

    MATH  Google Scholar 

  • Xu Y, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556

    Article  Google Scholar 

  • Yablonovitch E, Allara DL, Chang CC, Gmitter T, Bright TB (1986) Unsually low surface-recombination velocity on silicon and germanium surfaces. Phys Rev Lett 57:249–252

    Article  Google Scholar 

Download references

Acknowledgment

The author thanks Gabriela Kissling (Bath), David Tilley (Zurich), and Sixto Giménez (Castelló) for reading of the manuscript carefully and for useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence M. Peter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Peter, L.M. (2016). Semiconductor Electrochemistry. In: Giménez, S., Bisquert, J. (eds) Photoelectrochemical Solar Fuel Production. Springer, Cham. https://doi.org/10.1007/978-3-319-29641-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29641-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29639-5

  • Online ISBN: 978-3-319-29641-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics