Skip to main content

Tuberculosis

  • Chapter
  • First Online:
  • 5226 Accesses

Abstract

Tuberculosis (TB) is an infective disease caused by Mycobacterium tuberculosis (Mtb). The bacteria is spread through the air when people who have active TB infection cough or sneeze. The bacteria attack the lungs, primarily, but can also spread and attack other parts of the body. The most common symptom of active TB infection is chronic cough with blood-tinged sputum. It is estimated that one-third of the world’s population are infected with Mtb, although only 13 million chronic cases are active, and 1.5 million associated deaths occur. Treatment of TB uses antibiotics to kill the bacteria, but the treatment is not entirely effective. Vaccination in children decreases significantly the risk of infection.

This is a preview of subscription content, log in via an institution.

Buying options

eBook
USD   19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Coddington, E.A.: An Introduction to Ordinary Differential Equations. Dover, New York (1989)

    MATH  Google Scholar 

  2. Butcher, J.C.: Numerical Methods for Ordinary Differential Equation. Wiley, New York (2008)

    Book  MATH  Google Scholar 

  3. Strang, G.: Linear Algebra and Its Applications, 4th edn. Brooks/Cole, Belmont (2005)

    MATH  Google Scholar 

  4. Gantmacher, F.R.: The Theory of Matrices, vol. 2. Chelsea, New York (1959)

    MATH  Google Scholar 

  5. van den Driessche, P., Watmough, J.: Further notes on the basic reproduction number. In: Mathematical Epidemiology, pp. 159–178. Springer, Berlin/Heidelberg (2008)

    Google Scholar 

  6. Hale, J.K., Kocak, H.: Dynamics and Bifurcations. Springer, New York (1991)

    Book  MATH  Google Scholar 

  7. Friedman, A., Hao, W., Hu, B.: A free boundary problem for steady small plaques in the artery and their stability. J. Diff. Eqs. 259, 1227–1255 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Louzoun, Y., Xue, C., Lesinski, G.B., Friedman, A.: A mathematical model for pancreatic cancer growth and treatment. J. Theor. Biol. 351, 74–82 (2014)

    Article  MathSciNet  Google Scholar 

  9. Friedman, A., Tian, J.P., Fulci, G., Chiocca, E.A., Wang, J.: Glioma virotherapy: the effects of innate immune suppression and increased viral replication capacity. Cancer Res. 66, 2314–2319 (2006)

    Article  Google Scholar 

  10. Day, J., Friedman, A., Schlesinger, L.S.: Modeling the immune rheostat of macrophages in the lung in response to infection. Proc. Natl. Acad. Sci. USA 106, 11246–11251 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

15.1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chou, CS., Friedman, A. (2016). Tuberculosis. In: Introduction to Mathematical Biology. Springer Undergraduate Texts in Mathematics and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29638-8_15

Download citation

Publish with us

Policies and ethics