Skip to main content

Mitochondrial Depolarization in Endothelial and Other Vascular Cells and Their Role in the Regulation of Cerebral Vascular Tone

  • Chapter
  • First Online:
Vascular Ion Channels in Physiology and Disease

Abstract

Mitochondrial initiated events of the diverse cells types comprising the neurovascular unit promote changes in cerebrovascular tone through multiple signaling pathways. Activation of the adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) leads to mitochondrial depolarization as well as activation of cell-specific signaling mechanisms in endothelium, vascular smooth muscle (VSM), and perivascular and parenchymal nerves resulting in an integrated dilator response of cerebral arteries. Activation of mitoKATP channels relaxes VSM via generation of calcium sparks and subsequent downstream signaling mechanisms, and this relaxation can be augmented by nitric oxide (NO) produced by mitoKATP channel activation in endothelium and adjacent neurons. Some research suggests that calcium activated potassium channels may also be present in mitochondria (mitoKCa channels) and may affect cerebral vascular tone, but more research is needed to support this view. Pre-existing chronic conditions such as insulin resistance (IR) and/or diabetes impair mitoKATP channel-relaxation of cerebral arteries. Surprisingly, mitoKATP channel function after intense stress such as ischemia appears to be retained in large cerebral arteries despite generalized cerebral vascular dysfunction. Production of vasoactive factors following activation of mitochondria in response to physiological stimuli in one or more of the cells comprising the neurovascular unit may represent the elusive signaling link between metabolic rate and blood flow. In addition, our data indicate that mitoKATP channels represent an important, but underutilized target toward improving vascular dysfunction and decreasing brain injury in stroke patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ardehali H, O’Rourke B. Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol. 2005;39:7–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auchampach JA, Gross GJ. Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol. 1993;264:H1327–36.

    CAS  PubMed  Google Scholar 

  3. Ayajiki K, et al. Evidence for nitroxidergic innervation in monkey ophthalmic arteries in vivo and in vitro. Am J Physiol. 2000;279:H2006–12.

    CAS  Google Scholar 

  4. Bari F, et al. Global ischemia impairs ATP-sensitive K+ channel function in cerebral arterioles in piglets. Stroke. 1996;27:1874–81.

    Article  CAS  PubMed  Google Scholar 

  5. Bari F, Louis TM, Busija DW. Calcium-activated K+ channels in cerebral arterioles in piglets are resistant to ischemia. J Cereb Blood Flow Metab. 1997;17:1152–6.

    Article  CAS  PubMed  Google Scholar 

  6. Bednarczyk P, et al. Large-conductance Ca2+-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol. 2013;304:H1415–27.

    CAS  Google Scholar 

  7. Bienert GP, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Biochim Biophys Acta. 2007;1717:1–10.

    Google Scholar 

  8. Brown KA, et al. Effects of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol. 2007;27:1941–6.

    Article  CAS  PubMed  Google Scholar 

  9. Busija DW, Heistad DD. Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol. 1984;101:161–211.

    Article  CAS  PubMed  Google Scholar 

  10. Busija DW, et al. Targeting mitochondrial ATP-sensitive potassium channels—a novel approach to neuroprotection. Brain Res Rev. 2004;46:282–94.

    Article  CAS  PubMed  Google Scholar 

  11. Busija DW, et al. Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull. 2005;66:85–90.

    Article  CAS  PubMed  Google Scholar 

  12. Busija DW, et al. Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev. 2008;16:1471–7.

    Article  Google Scholar 

  13. Busija DW, Katakam PV. Mitochondrial mechanisms in cerebral vascular control: shared signaling pathways with preconditioning. J Vasc Res. 2014;51:175–89.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Calamita G, et al. The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem. 2005;280:17149–53.

    Article  CAS  PubMed  Google Scholar 

  15. Chalmers S, et al. Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007;42:447–66.

    Article  CAS  PubMed  Google Scholar 

  16. Chalmers S, et al. Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler Thromb Vasc Biol. 2012;32:3000–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheranov SY, Jaggar JH. Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol. 2004;556:755–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther. 2013;140:167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dai J, et al. Rearrangement of the close contact between the mitochondria and the sarcoplasmic reticulum in airway smooth muscle. Cell Calcium. 2005;37:333–40.

    Article  CAS  PubMed  Google Scholar 

  20. Dauphin F, MacKenzie ET. Cholinergic and vasoactive intestinal polypeptidergic innervation of the cerebral arteries. Pharmacol Ther. 1995;67:385–417.

    Article  CAS  PubMed  Google Scholar 

  21. Davidson SM. Endothelial mitochondria and heart disease. Cardiovasc Res. 2010;88:58–66.

    Article  CAS  PubMed  Google Scholar 

  22. Dietrich HH, et al. Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res. 2009;46:253–64.

    Article  CAS  PubMed  Google Scholar 

  23. Domoki F, et al. Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke. 1999;30:2713–8.

    Article  CAS  PubMed  Google Scholar 

  24. Domoki F, et al. Diazoxide prevents mitochondrial swelling and Ca (2+) accumulation in CAI pyramidal cells after cerebral ischemia in newborn pigs. Brain Res. 2004;1019:97–104.

    Article  CAS  PubMed  Google Scholar 

  25. Domoki F, et al. Diazoxide preserves hypercapnia-induced arteriolar vasodilation after global cerebral ischemia in piglets. Am J Physiol. 2005;289:H368–73.

    CAS  Google Scholar 

  26. Domoki F, et al. Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol. 2009;296:C97–105.

    Article  CAS  Google Scholar 

  27. Dorn GW, Scorrano L. Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res. 2010;107:689–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dromparis P, Sutendra G, Michelakis ED. The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl). 2010;88:1003–10.

    Article  CAS  Google Scholar 

  29. Duckles SP, Krause DN. Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol. 2007;34:801–8.

    Article  CAS  PubMed  Google Scholar 

  30. Duckles SP, Krause DN. Mechanisms of cerebrovascular protection: oestrogen, inflammation and mitochondria. Acta Physiol. 2011;203:149–54.

    Article  CAS  Google Scholar 

  31. Erdős B, et al. Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes. 2004;53:1352–9.

    Article  PubMed  Google Scholar 

  32. Erdős B, et al. Subtype specific potassium channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by reactive oxygen species. Stroke. 2004;35:964–9.

    Article  PubMed  Google Scholar 

  33. Erdős B, et al. Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H-oxidase-dependent superoxide anion production. Am J Physiol. 2006;290:H1264–70.

    Google Scholar 

  34. Farkas E, et al. Neuroprotection by diazoxide in animal models for cerebrovascular disorders. Vasc Dis Prev. 2006;3:253–63.

    Article  CAS  Google Scholar 

  35. Foster DB, et al. Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res. 2012;111:446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gaspar T, et al. ROS-independent preconditioning in neurons via activation of mitoKATP channels by BMS-191095. J Cereb Blood Flow Metab. 2008;28:1090–103.

    Article  CAS  PubMed  Google Scholar 

  37. Gaspar T, et al. Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem. 2008;105:1115–28.

    Article  CAS  PubMed  Google Scholar 

  38. Gaspar T, et al. Immediate neuronal preconditioning with NS1619. Brain Res. 2009;1285:196–207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grover GJ, et al. Pharmacologic characterization of BMS-191095, a mitochondrial K(ATP) opener with no peripheral vasodilator or cardiac action potential shortening activity. J Pharmacol Exp Ther. 2001;297:1184–92.

    CAS  PubMed  Google Scholar 

  40. Grover GJ, et al. Protective effect of mitochondrial KATP activation in an isolated gracilis model of ischemia and reperfusion in dogs. J Cardiovasc Pharmacol. 2003;42:790–2.

    Article  CAS  PubMed  Google Scholar 

  41. Han D, et al. Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. Arterioscler Thromb Vasc Biol. 2012;32:2531–9.

    Article  Google Scholar 

  42. Han D, William E, Cadenas E. Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J. 2001;353:411–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hanley PJ, et al. Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol. 2003;547:387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Holland M, et al. Effects of the BKCa channel activator, NS1619, on rat cerebral artery smooth muscle. Br J Pharmacol. 1996;117:119–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jastroch M, et al. Mitochondrial proton and electron leaks. Essays Biochem. 2010;47:53–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang K, et al. Regulation of gap junctional communication by astrocytic mitochondrial K(ATP) channels following neurotoxin administration in in vitro and in vivo models. Neurosignals. 2011;19:63–74.

    Article  CAS  PubMed  Google Scholar 

  47. Jonckheere AI, Smeitink JA, Rodenburg RJ. Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis. 2012;35:211–25.

    Article  CAS  PubMed  Google Scholar 

  48. Katakam PV, et al. Myocardial preconditioning against ischemia-reperfusion is abolished in Zucker obese rats with insulin. Am J Physiol. 2007;292:R920–6.

    CAS  Google Scholar 

  49. Katakam PV, et al. Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol. 2009;296:R289–98.

    CAS  Google Scholar 

  50. Katakam PV, et al. Diversity of mitochondria-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin-resistant rats. Am J Physiol. 2014;307:H493–503.

    Article  CAS  Google Scholar 

  51. Katakam PV, et al. Depolarization of mitochondria in endothelial cells promotes cerebral vascular vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol. 2013;33:752–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Katakam PVG, et al. Mitochondria-dependent cerebral artery vasodilation is mediated by the activation of neuronal nitric oxide synthase following mitochondrial depolarization of perivascular nerves. FASEB J. 2012;26:1058.1059. Abstract.

    Google Scholar 

  53. Kicinska A, Szewczyk A. A Large-conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol Mech Methods. 2004;14:59–61.

    Article  CAS  PubMed  Google Scholar 

  54. Kis B, et al. Diazoxide induces delayed preconditioning in cultured rat cortical neurons. J Neurochem. 2003;87:969–80.

    Article  CAS  PubMed  Google Scholar 

  55. Kis B, et al. The mitochondrial KATP channel opener BMS191095 induces neuronal preconditioning. Neuroreport. 2004;15:345–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kizhakekuttu TJ, et al. Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Biochem Biophys Res Commun. 2012;422(3):515–21.

    Article  Google Scholar 

  57. Kluge MA, Fetterman JL, Vita JA. Mitochondria and endothelial function. Circ Res. 2013;12:1171–88.

    Article  Google Scholar 

  58. Koller A, Toth P. Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res. 2012;49:375–89.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Korper S, et al. The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG-1a. Exp Hematol. 2003;31:815–23.

    Article  CAS  PubMed  Google Scholar 

  60. Kubli DA, Gustafsson ÅB. Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res. 2012;12(111):1208–21.

    Article  Google Scholar 

  61. Lacza Z, et al. Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res. 2003;19:27–36.

    Article  Google Scholar 

  62. Lacza Z, et al. Heart mitochondria contain functional ATP-dependent K+ channels. J Mol Cell Cardiol. 2003;35:1339–47.

    Article  CAS  PubMed  Google Scholar 

  63. Lacza Z, et al. Lack of mitochondrial nitric oxide production in the brain. J Neurochem. 2004;90:942–51.

    Article  CAS  PubMed  Google Scholar 

  64. Lacza Z, et al. Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide. 2006;14:162–8.

    Article  CAS  PubMed  Google Scholar 

  65. Lacza Z, et al. Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res. 2006;40:369–78.

    Article  CAS  PubMed  Google Scholar 

  66. Lenzser G, et al. Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res. 2005;105:72–80.

    Article  Google Scholar 

  67. Lustgarten MS, et al. Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. J Biol Chem. 2003;278:5557–63.

    Article  Google Scholar 

  68. Marchissio MJ, et al. Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol. 2012;64:246–54.

    Article  Google Scholar 

  69. Mayanagi K, et al. The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab. 2007;27:348–55.

    Article  CAS  PubMed  Google Scholar 

  70. Mayanagi K, et al. Systemic administration of diazoxide induces delayed preconditioning against transient focal cerebral ischemia in rats. Brain Res. 2007;1168:106–11.

    Article  CAS  PubMed  Google Scholar 

  71. Mayanagi K, et al. Acute treatment with rosuvastatin protects insulin resistant (C57BL/6J ob/ob) mice against transient cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:1927–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16:R551–60.

    Article  CAS  PubMed  Google Scholar 

  73. McCarron JG, et al. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res. 2013;50(5):357–71.

    Article  PubMed  PubMed Central  Google Scholar 

  74. McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther. 2012;17:21–33.

    Article  CAS  PubMed  Google Scholar 

  75. Muller FL, Liu Y, Van Remmem H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem. 2004;279:49064–73.

    Article  CAS  PubMed  Google Scholar 

  76. Oldendorf WH, Cornford ME, Brown WJ. The large apparent work capacity of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol. 1977;1:409–17.

    Article  CAS  PubMed  Google Scholar 

  77. Perez-Pinzon MA, Dave KR, Raval AP. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal. 2005;7:1150–7.

    Article  CAS  PubMed  Google Scholar 

  78. Rajapakse N, et al. Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. J Neurosci Res. 2003;73:206–14.

    Article  CAS  PubMed  Google Scholar 

  79. Rines AK, Bayeva M, Ardehali H. A new pROM king for the MitoKATP dance ROMK takes the lead. Circ Res. 2012;111:392–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Robin E, et al. Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res. 2011;1375:137–46.

    Article  CAS  PubMed  Google Scholar 

  81. Rutkai I, et al. Sustained mitochondrial functioning in cerebral arteries after transient ischemic stress in the rat: a potential target for therapies. Am J Physiol. 2014;307:H958–66.

    CAS  Google Scholar 

  82. Seharaseyon J, et al. Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol. 2000;32:1923–30.

    Article  CAS  PubMed  Google Scholar 

  83. Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW. MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol. 2002;283:H1005–11.

    CAS  Google Scholar 

  84. Somlyo AV, Somlyo AP. Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle. Science. 1971;174:955–8.

    Article  CAS  PubMed  Google Scholar 

  85. Terao S, et al. Inflammatory and injury responses to ischemic stroke in obese mice. Stroke. 2008;39:943–50.

    Article  PubMed  Google Scholar 

  86. Toda N, Okamura T. Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertens. 1996;14:423–34.

    Article  CAS  PubMed  Google Scholar 

  87. Votyakova TV, Reynolds IJ. DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem. 2001;79:266–77.

    Article  CAS  PubMed  Google Scholar 

  88. Wappler EA, et al. Mitochondrial dynamics associated with oxygen-glucose deprivation in rat primary neuronal cultures. PLoS One. 2013;8(5):e63206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Widlansky ME, Gutterman DD. Regulation of endothelial function by mitochondrial reactive species. Antiox Redox Signal. 2011;15:1517–30.

    Article  CAS  Google Scholar 

  90. Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta. 2013;1827(5):598–611.

    Article  CAS  PubMed  Google Scholar 

  91. Xi Q, Cheranov SY, Jaggar JH. Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res. 2005;97:354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol. 2007;292:H2023–31.

    CAS  Google Scholar 

  93. Zick M, Rabl R, Reichert AS. Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta. 2008;1793:5–19.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Nancy Busija, M.A. for the help with editing the manuscript. We also thank Ken Grant of the Cellular Imaging Shared Resource at Wake Forest University Health Sciences for assistance with electron microscopy. This work was supported by National Institutes of Health grants (D.W.B.: HL-077731, HL-030260, HL093554 and HL-065380), Louisiana Board of Regents Support Fund-Research Competitiveness Subprogram (P.V.K.: LEQSF(2014-17)-RD-A-11), American Heart Association National Center NRCP Scientist Development Grant (P.V.K.: 14SDG20490359), and American Heart Association Post-Doctoral Fellowship Grant (I.R.: 15POST23040005). This research was supported in whole or in part by the Louisiana Board of Regents Endowed Chairs for Eminent Scholars program to D.W.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Busija Ph.D., M.D. [Hon] .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Busija, D.W., Rutkai, I., Katakam, P.V. (2016). Mitochondrial Depolarization in Endothelial and Other Vascular Cells and Their Role in the Regulation of Cerebral Vascular Tone. In: Levitan, PhD, I., Dopico, MD, PhD, A. (eds) Vascular Ion Channels in Physiology and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-29635-7_3

Download citation

Publish with us

Policies and ethics