Skip to main content

Membrane Lipids and Modulation of Vascular Smooth Muscle Ion Channels

  • Chapter
  • First Online:

Abstract

In vascular smooth muscle (VSM), lipids regulate the function of many cellular proteins, including ion channels. Lipids can directly target ion channels or regulate ion channels indirectly, that is, through interactions with cell signalling molecules that eventually target the ion channel. We summarize current knowledge on VSM ion channel regulation by lipids, whether lipids are originated in the smooth muscle itself, vascular endothelium, or paracrine or circulation sources, with a focus on possible direct interaction between lipid molecules and the proteins that constitute the VSM ion channel complex. We also describe the contribution of such lipid-VSM ion channel interaction to VSM physiology and pathophysiology. However, more than one mechanism or type of interaction may be involved in lipid-induced regulation of VSM ion channels and some mechanisms are not mutually exclusive, which adds significant complexity to the field. Understanding the mechanisms that underlie lipid modulation of VSM ion channels, however, is necessary for developing novel therapeutic approaches to improve vascular function and prevent or counteract widespread cardio/cerebrovascular disorders.

This is a preview of subscription content, log in via an institution.

References

  1. Dopico AM, Tigyi GJ. A glance at the structural and functional diversity of membrane lipids. Methods Mol Biol. 2007;400:1–13.

    CAS  PubMed  Google Scholar 

  2. Lo YH, Bradley TM, Rhoads DE. High-affinity Ca2+, Mg2+-ATPase in plasma membrane-rich preparations from olfactory epithelium of Atlantic salmon. Biochim Biophys Acta. 1994;1192(2):153–8.

    CAS  PubMed  Google Scholar 

  3. Li W, Sorensen PW, Gallaher DD. The olfactory system of migratory adult sea lamprey (Petromyzon marinus) is specifically and acutely sensitive to unique bile acids released by conspecific larvae. J Gen Physiol. 1995;105(5):569–87.

    CAS  PubMed  Google Scholar 

  4. Smith PD, et al. KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol. 2008;586(4):1147–60.

    CAS  PubMed  Google Scholar 

  5. Kuo A, et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science. 2003;300(5627):1922–6.

    CAS  PubMed  Google Scholar 

  6. Cheng WW, et al. Dual-mode phospholipid regulation of human inward rectifying potassium channels. Biophys J. 2011;100(3):620–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cukras CA, Jeliazkova I, Nichols CG. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels. J Gen Physiol. 2002;119(6):581–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Shyng SL, et al. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels. J Gen Physiol. 2000;116(5):599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. D’Avanzo N, et al. Direct and specific activation of human inward rectifier K+ channels by membrane phosphatidylinositol 4,5-bisphosphate. J Biol Chem. 2010;285(48):37129–32.

    PubMed  PubMed Central  Google Scholar 

  10. Inanobe A, et al. A structural determinant for the control of PIP2 sensitivity in G protein-gated inward rectifier K+ channels. J Biol Chem. 2010;285(49):38517–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo J, MacDonell KL, Giles WR. Effects of sphingosine 1-phosphate on pacemaker activity in rabbit sino-atrial node cells. Pflugers Arch. 1999;438(5):642–8.

    CAS  PubMed  Google Scholar 

  12. Liu Y, Liu D, Krafte DS. Decrease of inward rectification as a mechanism for arachidonic acid-induced potentiation of hKir2.3. Eur Biophys J. 2002;31(7):497–503.

    CAS  PubMed  Google Scholar 

  13. Orie NN, Fry CH, Clapp LH. Evidence that inward rectifier K+ channels mediate relaxation by the PGI2 receptor agonist cicaprost via a cyclic AMP-independent mechanism. Cardiovasc Res. 2006;69(1):107–15.

    CAS  PubMed  Google Scholar 

  14. D’Avanzo N, et al. Enantioselective protein-sterol interactions mediate regulation of both prokaryotic and eukaryotic inward rectifier K+ channels by cholesterol. PLoS One. 2011;6(4):e19393.

    PubMed  PubMed Central  Google Scholar 

  15. Romanenko VG, Rothblat GH, Levitan I. Modulation of endothelial inward-rectifier K+ current by optical isomers of cholesterol. Biophys J. 2002;83(6):3211–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosenhouse-Dantsker A, et al. Comparative analysis of cholesterol sensitivity of Kir channels: role of the CD loop. Channels (Austin). 2010;4(1):63–6.

    CAS  Google Scholar 

  17. Rosenhouse-Dantsker A, Logothetis DE, Levitan I. Cholesterol sensitivity of KIR2.1 is controlled by a belt of residues around the cytosolic pore. Biophys J. 2011;100(2):381–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Deng W, et al. Hypercholesterolemia induces up-regulation of KACh cardiac currents via a mechanism independent of phosphatidylinositol 4,5-bisphosphate and Gbetagamma. J Biol Chem. 2012;287(7):4925–35.

    CAS  PubMed  Google Scholar 

  19. Durell SR, Hao Y, Guy HR. Structural models of the transmembrane region of voltage-gated and other K+ channels in open, closed, and inactivated conformations. J Struct Biol. 1998;121(2):263–84.

    CAS  PubMed  Google Scholar 

  20. Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3(8):a003947.

    PubMed  PubMed Central  Google Scholar 

  21. Peters CH, Ruben PC. Introduction to sodium channels. Handb Exp Pharmacol. 2014;221:1–6.

    CAS  PubMed  Google Scholar 

  22. Hansen PB. Functional and pharmacological consequences of the distribution of voltage-gated calcium channels in the renal blood vessels. Acta Physiol (Oxf). 2013;207(4):690–9.

    CAS  Google Scholar 

  23. Harraz OF, Welsh DG. T-type Ca2+ channels in cerebral arteries: approaches, hypotheses, and speculation. Microcirculation. 2013;20(4):299–306.

    CAS  PubMed  Google Scholar 

  24. Glossmann H, Striessnig J. Molecular properties of calcium channels. Rev Physiol Biochem Pharmacol. 1990;114:1–105.

    CAS  PubMed  Google Scholar 

  25. Le Blanc C, et al. Regulation of vascular L-type Ca2+ channels by phosphatidylinositol 3,4,5-trisphosphate. Circ Res. 2004;95(3):300–7.

    PubMed  Google Scholar 

  26. Teo ST, et al. Lysophosphatidic acid in vascular development and disease. IUBMB Life. 2009;61(8):791–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Wei Y, et al. Lysophosphatidic acid increases the electrophysiological instability of adult rabbit ventricular myocardium by augmenting L-type calcium current. PLoS One. 2012;7(9):e45862.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Conforti L, Sumii K, Sperelakis N. Dioctanoyl-glycerol inhibits L-type calcium current in embryonic chick cardiomyocytes independent of protein kinase C activation. J Mol Cell Cardiol. 1995;27(5):1219–24.

    CAS  PubMed  Google Scholar 

  29. Shen JB, Pappano AJ. Palmitoyl-L-carnitine acts like ouabain on voltage, current, and contraction in guinea pig ventricular cells. Am J Physiol. 1995;268(3 Pt 2):H1027–36.

    CAS  PubMed  Google Scholar 

  30. Liu QY, Rosenberg RL. Activation and inhibition of reconstituted cardiac L-type calcium channels by palmitoyl-L-carnitine. Biochem Biophys Res Commun. 1996;228(2):252–8.

    CAS  PubMed  Google Scholar 

  31. Petit-Jacques J, Hartzell HC. Effect of arachidonic acid on the L-type calcium current in frog cardiac myocytes. J Physiol. 1996;493(Pt 1):67–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu SJ. Inhibition of L-type Ca2+ channel current and negative inotropy induced by arachidonic acid in adult rat ventricular myocytes. Am J Physiol Cell Physiol. 2007;293(5):C1594–604.

    CAS  PubMed  Google Scholar 

  33. Shimasue K, et al. Effects of anandamide and arachidonic acid on specific binding of (+) -PN200-110, diltiazem and (−) -desmethoxyverapamil to L-type Ca2+ channel. Eur J Pharmacol. 1996;296(3):347–50.

    CAS  PubMed  Google Scholar 

  34. Roberts-Crowley ML, Rittenhouse AR. Arachidonic acid inhibition of L-type calcium (CaV1.3b) channels varies with accessory CaVbeta subunits. J Gen Physiol. 2009;133(4):387–403.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol. 2005;45:413–38.

    CAS  PubMed  Google Scholar 

  36. Cloutier M, et al. 20-HETE inotropic effects involve the activation of a nonselective cationic current in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2003;285(3):L560–8.

    CAS  PubMed  Google Scholar 

  37. Zeng Q, et al. 20-HETE increases NADPH oxidase-derived ROS production and stimulates the L-type Ca2+ channel via a PKC-dependent mechanism in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2010;299(4):H1109–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen J, et al. Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids. Mol Pharmacol. 1999;55(2):288–95.

    CAS  PubMed  Google Scholar 

  39. Fang X, et al. Epoxyeicosatrienoic acids increase intracellular calcium concentration in vascular smooth muscle cells. Hypertension. 1999;34(6):1242–6.

    CAS  PubMed  Google Scholar 

  40. Yiu SS, et al. 12-Hydroxyeicosatetraenoic acid participates in angiotensin II afferent arteriolar vasoconstriction by activating L-type calcium channels. J Lipid Res. 2003;44(12):2391–9.

    CAS  PubMed  Google Scholar 

  41. DiNicolantonio JJ, et al. Omega-3s and cardiovascular health. Ochsner J. 2014;14(3):399–412.

    PubMed  PubMed Central  Google Scholar 

  42. Xiao YF, et al. Suppression of voltage-gated L-type Ca2+ currents by polyunsaturated fatty acids in adult and neonatal rat ventricular myocytes. Proc Natl Acad Sci U S A. 1997;94(8):4182–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hazama H, et al. Omega-3 polyunsaturated fatty acids—modulation of voltage-dependent L-type Ca2+ current in guinea-pig tracheal smooth muscle cells. Eur J Pharmacol. 1998;355(2–3):257–66.

    CAS  PubMed  Google Scholar 

  44. Ferrier GR, et al. Differential effects of docosahexaenoic acid on contractions and L-type Ca2+ current in adult cardiac myocytes. Cardiovasc Res. 2002;54(3):601–10.

    CAS  PubMed  Google Scholar 

  45. Asano M, et al. Eicosapentaenoic acid inhibits vasopressin-activated Ca2+ influx and cell proliferation in rat aortic smooth muscle cell lines. Eur J Pharmacol. 1999;379(2–3):199–209.

    CAS  PubMed  Google Scholar 

  46. Guan Z, et al. Sphingosine-1-phosphate evokes unique segment-specific vasoconstriction of the renal microvasculature. J Am Soc Nephrol. 2014;25(8):1774–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. McDonough PM, et al. Control of cardiac Ca2+ levels. Inhibitory actions of sphingosine on Ca2+ transients and L-type Ca2+ channel conductance. Circ Res. 1994;75(6):981–9.

    CAS  PubMed  Google Scholar 

  48. Schreur KD, Liu S. Involvement of ceramide in inhibitory effect of IL-1 beta on L-type Ca2+ current in adult rat ventricular myocytes. Am J Physiol. 1997;272(6 Pt 2):H2591–8.

    CAS  PubMed  Google Scholar 

  49. Sen L, et al. Cholesterol increases the L-type voltage-sensitive calcium channel current in arterial smooth muscle cells. Circ Res. 1992;71(4):1008–14.

    CAS  PubMed  Google Scholar 

  50. Shan JJ, et al. Inhibition of membrane L-type calcium channel activity and intracellular calcium concentration by 24R, 25-dihydroxyvitamin D3 in vascular smooth muscle. Steroids. 1996;61(11):657–63.

    CAS  PubMed  Google Scholar 

  51. van Hoeijen DA, Blom MT, Tan HL. Cardiac sodium channels and inherited electrophysiological disorders: an update on the pharmacotherapy. Expert Opin Pharmacother. 2014;15(13):1875–87.

    PubMed  Google Scholar 

  52. Calhoun JD, Isom LL. The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb Exp Pharmacol. 2014;221:51–89.

    CAS  PubMed  Google Scholar 

  53. Pignier C, et al. Direct protective effects of poly-unsaturated fatty acids, DHA and EPA, against activation of cardiac late sodium current: a mechanism for ischemia selectivity. Basic Res Cardiol. 2007;102(6):553–64.

    CAS  PubMed  Google Scholar 

  54. Liu Z, et al. C(6)-ceramide inhibited Na+ currents by intracellular Ca2+ release in rat myoblasts. J Cell Physiol. 2007;213(1):151–60.

    CAS  PubMed  Google Scholar 

  55. Hille B. Ionic channels: molecular pores of excitable membranes. Harvey Lect. 1986;82:47–69.

    CAS  PubMed  Google Scholar 

  56. Han WN, et al. Effect of 15-HETE on potassium channels of rabbit pulmonary arterial smooth muscles during hypoxia. Sheng Li Xue Bao. 2004;56(6):717–22.

    CAS  PubMed  Google Scholar 

  57. Moral-Sanz J, et al. Ceramide inhibits Kv currents and contributes to TP-receptor-induced vasoconstriction in rat and human pulmonary arteries. Am J Physiol Cell Physiol. 2011;301(1):C186–94.

    CAS  PubMed  Google Scholar 

  58. Dopico AM, Bukiya AN, Singh AK. Large conductance, calcium- and voltage-gated potassium (BK) channels: regulation by cholesterol. Pharmacol Ther. 2012;135(2):133–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang H, Zhang G, Cui J. BK channels: multiple sensors, one activation gate. Front Physiol. 2015;6:29.

    PubMed  PubMed Central  Google Scholar 

  60. Knot HJ, Nelson MT. Regulation of arterial diameter and wall [Ca2+] in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol. 1998;508(Pt 1):199–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ledoux J, et al. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006;21:69–78.

    CAS  Google Scholar 

  62. Brayden JE, Nelson MT. Regulation of arterial tone by activation of calcium-dependent potassium channels. Science. 1992;256(5056):532–5.

    CAS  PubMed  Google Scholar 

  63. Jaggar JH, et al. Ca2+ channels, ryanodine receptors and Ca(2+)-activated K+ channels: a functional unit for regulating arterial tone. Acta Physiol Scand. 1998;164(4):577–87.

    CAS  PubMed  Google Scholar 

  64. Vaithianathan T, et al. Direct regulation of BK channels by phosphatidylinositol 4,5-bisphosphate as a novel signaling pathway. J Gen Physiol. 2008;132(1):13–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ahn DS, et al. Fatty acids directly increase the activity of Ca2+-activated K+ channels in rabbit coronary smooth muscle cells. Yonsei Med J. 1994;35(1):10–24.

    CAS  PubMed  Google Scholar 

  66. Kirber MT, et al. Both membrane stretch and fatty acids directly activate large conductance Ca2+-activated K+ channels in vascular smooth muscle cells. FEBS Lett. 1992;297(1–2):24–8.

    CAS  PubMed  Google Scholar 

  67. Clarke AL, et al. Site of action of fatty acids and other charged lipids on BKCa channels from arterial smooth muscle cells. Am J Physiol Cell Physiol. 2003;284(3):C607–19.

    CAS  PubMed  Google Scholar 

  68. Lai LH, et al. Effects of docosahexaenoic acid on large-conductance Ca2+-activated K+ channels and voltage-dependent K+ channels in rat coronary artery smooth muscle cells. Acta Pharmacol Sin. 2009;30(3):314–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Li X, et al. Docosahexanoic acid-induced coronary arterial dilation: actions of 17S-hydroxy docosahexanoic acid on K+ channel activity. J Pharmacol Exp Ther. 2011;336(3):891–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Ye D, et al. Cytochrome p-450 epoxygenase metabolites of docosahexaenoate potently dilate coronary arterioles by activating large-conductance calcium-activated potassium channels. J Pharmacol Exp Ther. 2002;303(2):768–76.

    CAS  PubMed  Google Scholar 

  71. Hoshi T, et al. Omega-3 fatty acids lower blood pressure by directly activating large-conductance Ca2+-dependent K+ channels. Proc Natl Acad Sci U S A. 2013;110(12):4816–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Martin P, et al. Arachidonic acid activation of BKCa (Slo1) channels associated to the beta1-subunit in human vascular smooth muscle cells. Pflugers Arch. 2014;466(9):1779–92.

    CAS  PubMed  Google Scholar 

  73. Yan J, et al. Docosahexaenoic acid attenuates hypoxic pulmonary vasoconstriction by activating the large conductance Ca2+-activated K+ currents in pulmonary artery smooth muscle cells. Pulm Pharmacol Ther. 2014;28(1):9–16.

    CAS  PubMed  Google Scholar 

  74. Hoshi T, et al. A point mutation in the human Slo1 channel that impairs its sensitivity to omega-3 docosahexaenoic acid. J Gen Physiol. 2013;142(5):507–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoshi T, et al. Mechanism of the modulation of BK potassium channel complexes with different auxiliary subunit compositions by the omega-3 fatty acid DHA. Proc Natl Acad Sci U S A. 2013;110(12):4822–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Guerard P, et al. Arachidonic acid relaxes human pulmonary arteries through K+ channels and nitric oxide pathways. Eur J Pharmacol. 2004;501(1-3):127–35.

    CAS  PubMed  Google Scholar 

  77. Schubert R, et al. Iloprost activates KCa channels of vascular smooth muscle cells: role of cAMP-dependent protein kinase. Am J Physiol. 1996;271(4 Pt 1):C1203–11.

    CAS  PubMed  Google Scholar 

  78. Zhu S, Han G, White RE. PGE2 action in human coronary artery smooth muscle: role of potassium channels and signaling cross-talk. J Vasc Res. 2002;39(6):477–88.

    CAS  PubMed  Google Scholar 

  79. Klockgether-Radke AP, et al. Mechanisms involved in the relaxing effect of midazolam on coronary arteries. Eur J Anaesthesiol. 2005;22(2):135–9.

    CAS  PubMed  Google Scholar 

  80. Parajuli SP, Provence A, Petkov GV. Prostaglandin E2 excitatory effects on guinea pig urinary bladder smooth muscle: a novel regulatory mechanism mediated by large-conductance voltage- and Ca2+-activated K+ channels. Eur J Pharmacol. 2014;738:179–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Tanaka Y, Koike K, Toro L. MaxiK channel roles in blood vessel relaxations induced by endothelium-derived relaxing factors and their molecular mechanisms. J Smooth Muscle Res. 2004;40(4-5):125–53.

    PubMed  Google Scholar 

  82. Zou AP, et al. Stereospecific effects of epoxyeicosatrienoic acids on renal vascular tone and K+-channel activity. Am J Physiol. 1996;270(5 Pt 2):F822–32.

    CAS  PubMed  Google Scholar 

  83. Lu T, et al. Dihydroxyeicosatrienoic acids are potent activators of Ca2+-activated K+ channels in isolated rat coronary arterial myocytes. J Physiol. 2001;534(Pt 3):651–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lauterbach B, et al. Cytochrome P450-dependent eicosapentaenoic acid metabolites are novel BK channel activators. Hypertension. 2002;39(2 Pt 2):609–13.

    CAS  PubMed  Google Scholar 

  85. Dimitropoulou C, et al. Protein phosphatase 2A and Ca2+-activated K+ channels contribute to 11,12-epoxyeicosatrienoic acid analog mediated mesenteric arterial relaxation. Prostaglandins Other Lipid Mediat. 2007;83(1-2):50–61.

    CAS  PubMed  Google Scholar 

  86. Loot AE, et al. 11,12-EET stimulates the association of BK channel alpha and beta1 subunits in mitochondria to induce pulmonary vasoconstriction. PLoS One. 2012;7(9):e46065.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Li PL, Campbell WB. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ Res. 1997;80(6):877–84.

    CAS  PubMed  Google Scholar 

  88. Zhang Y, et al. EET homologs potently dilate coronary microvessels and activate BKCa channels. Am J Physiol Heart Circ Physiol. 2001;280(6):H2430–40.

    CAS  PubMed  Google Scholar 

  89. Archer SL, et al. Endothelium-derived hyperpolarizing factor in human internal mammary artery is 11,12-epoxyeicosatrienoic acid and causes relaxation by activating smooth muscle BK(Ca) channels. Circulation. 2003;107(5):769–76.

    CAS  PubMed  Google Scholar 

  90. Morin C, et al. Relaxing effects of 5-oxo-ETE on human bronchi involve BKCa channel activation. Prostaglandins Other Lipid Mediat. 2007;83(4):311–9.

    CAS  PubMed  Google Scholar 

  91. Morin C, et al. Relaxing effects of 17(18)-EpETE on arterial and airway smooth muscles in human lung. Am J Physiol Lung Cell Mol Physiol. 2009;296(1):L130–9.

    CAS  PubMed  Google Scholar 

  92. Hercule HC, et al. The vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK alpha channel subunit in rodents. Exp Physiol. 2007;92(6):1067–76.

    CAS  PubMed  Google Scholar 

  93. Wu SN, Li HF, Chiang HT. Actions of epoxyeicosatrienoic acid on large-conductance Ca2+-activated K+ channels in pituitary GH3 cells. Biochem Pharmacol. 2000;60(2):251–62.

    CAS  PubMed  Google Scholar 

  94. Benoit C, et al. EETs relax airway smooth muscle via an EpDHF effect: BKCa channel activation and hyperpolarization. Am J Physiol Lung Cell Mol Physiol. 2001;280(5):L965–73.

    CAS  PubMed  Google Scholar 

  95. Subramani J, et al. Atorvastatin restores the impaired vascular endothelium-dependent relaxations mediated by nitric oxide and endothelium-derived hyperpolarizing factors but not hypotension in sepsis. J Cardiovasc Pharmacol. 2009;54(6):526–34.

    CAS  PubMed  Google Scholar 

  96. Fukao M, et al. Regulation of BKCa channels expressed in human embryonic kidney 293 cells by epoxyeicosatrienoic acid. Mol Pharmacol. 2001;59(1):16–23.

    CAS  PubMed  Google Scholar 

  97. Bukiya AN, et al. Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. J Biol Chem. 2014;289(51):35314–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Bukiya AN, et al. An alcohol-sensing site in the calcium- and voltage-gated, large conductance potassium (BK) channel. Proc Natl Acad Sci U S A. 2014;111(25):9313–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bolotina V, et al. Variations of membrane cholesterol alter the kinetics of Ca2+-dependent K+ channels and membrane fluidity in vascular smooth muscle cells. Pflugers Arch. 1989;415(3):262–8.

    CAS  PubMed  Google Scholar 

  100. Bregestovski PD, Bolotina VM, Serebryakov VN. Fatty acid modifies Ca2+-dependent potassium channel activity in smooth muscle cells from the human aorta. Proc R Soc Lond B Biol Sci. 1989;237(1288):259–66.

    CAS  PubMed  Google Scholar 

  101. Brainard AM, et al. Maxi-K channels localize to caveolae in human myometrium: a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+ current. Am J Physiol Cell Physiol. 2005;289(1):C49–57.

    CAS  PubMed  Google Scholar 

  102. Bukiya AN, et al. Smooth muscle cholesterol enables BK beta1 subunit-mediated channel inhibition and subsequent vasoconstriction evoked by alcohol. Arterioscler Thromb Vasc Biol. 2011;31(11):2410–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Singh AK, et al. Multiple cholesterol recognition/interaction amino acid consensus (CRAC) motifs in cytosolic C tail of Slo1 subunit determine cholesterol sensitivity of Ca2+- and voltage-gated K+ (BK) channels. J Biol Chem. 2012;287(24):20509–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang M, Shivakumar B, Asuncion-Chin M, Bukiya A, Dopico A. Differential contribution of individual CRAC domains to the cholesterol sensitivity of BK channels. 59th Biophysical Society Annual Meeting, Baltimore, MD, 2015. Abstract L3357.

    Google Scholar 

  105. Sobey CG. Potassium channel function in vascular disease. Arterioscler Thromb Vasc Biol. 2001;21(1):28–38.

    CAS  PubMed  Google Scholar 

  106. Najibi S, et al. Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery. Am J Physiol. 1994;266(5 Pt 2):H2061–7.

    CAS  PubMed  Google Scholar 

  107. Najibi S, Cohen RA. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Am J Physiol. 1995;269(3 Pt 2):H805–11.

    CAS  PubMed  Google Scholar 

  108. Jeremy RW, McCarron H. Effect of hypercholesterolemia on Ca2+-dependent K+ channel-mediated vasodilatation in vivo. Am J Physiol Heart Circ Physiol. 2000;279(4):H1600–8.

    CAS  PubMed  Google Scholar 

  109. Yoshihara S, et al. A neuroactive steroid inhibits guinea pig airway sensory nerves via Maxi-K channel activation. Int Arch Allergy Immunol. 2006;141(1):31–6.

    CAS  PubMed  Google Scholar 

  110. Jacob MK, White RE. Diazepam, gamma-aminobutyric acid, and progesterone open K+ channels in myocytes from coronary arteries. Eur J Pharmacol. 2000;403(3):209–19.

    CAS  PubMed  Google Scholar 

  111. Hu XQ, et al. Pregnancy upregulates large-conductance Ca2+-activated K+ channel activity and attenuates myogenic tone in uterine arteries. Hypertension. 2011;58(6):1132–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Deenadayalu V, et al. Testosterone-induced relaxation of coronary arteries: activation of BKCa channels via the cGMP-dependent protein kinase. Am J Physiol Heart Circ Physiol. 2012;302(1):H115–23.

    CAS  PubMed  Google Scholar 

  113. Tep-areenan P, Kendall DA, Randall MD. Testosterone-induced vasorelaxation in the rat mesenteric arterial bed is mediated predominantly via potassium channels. Br J Pharmacol. 2002;135(3):735–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Saldanha PA, et al. Long- and short-term effects of androgens in human umbilical artery smooth muscle. Clin Exp Pharmacol Physiol. 2013;40(3):181–9.

    CAS  PubMed  Google Scholar 

  115. Han G, et al. Estrogen receptor alpha mediates acute potassium channel stimulation in human coronary artery smooth muscle cells. J Pharmacol Exp Ther. 2006;316(3):1025–30.

    CAS  PubMed  Google Scholar 

  116. Valverde MA, et al. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science. 1999;285(5435):1929–31.

    CAS  PubMed  Google Scholar 

  117. Wellman GC, et al. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca2+-dependent K+ channels. Circ Res. 1996;79(5):1024–30.

    CAS  PubMed  Google Scholar 

  118. Rosenfeld CR, et al. Calcium-activated potassium channels and nitric oxide coregulate estrogen-induced vasodilation. Am J Physiol Heart Circ Physiol. 2000;279(1):H319–28.

    CAS  PubMed  Google Scholar 

  119. White RE, et al. Endothelium-independent effect of estrogen on Ca2+-activated K+ channels in human coronary artery smooth muscle cells. Cardiovasc Res. 2002;53(3):650–61.

    CAS  PubMed  Google Scholar 

  120. Yu X, et al. Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle. Am J Physiol Endocrinol Metab. 2011;301(5):E882–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Tsang SY, et al. Differential regulation of K+ and Ca2+ channel gene expression by chronic treatment with estrogen and tamoxifen in rat aorta. Eur J Pharmacol. 2004;483(2-3):155–62.

    CAS  PubMed  Google Scholar 

  122. Tsang SY, et al. Contribution of K+ channels to relaxation induced by 17beta-estradiol but not by progesterone in isolated rat mesenteric artery rings. J Cardiovasc Pharmacol. 2003;41(1):4–13.

    CAS  PubMed  Google Scholar 

  123. Tsang SY, et al. Estrogen and tamoxifen modulate cerebrovascular tone in ovariectomized female rats. Hypertension. 2004;44(1):78–82.

    CAS  PubMed  Google Scholar 

  124. Nagar D, Liu XT, Rosenfeld CR. Estrogen regulates {beta}1-subunit expression in Ca2+-activated K+ channels in arteries from reproductive tissues. Am J Physiol Heart Circ Physiol. 2005;289(4):H1417–27.

    CAS  PubMed  Google Scholar 

  125. Dick GM. The pure anti-oestrogen ICI 182,780 (Faslodex) activates large conductance Ca2+-activated K+ channels in smooth muscle. Br J Pharmacol. 2002;136(7):961–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Dick GM, et al. Tamoxifen activates smooth muscle BK channels through the regulatory beta1 subunit. J Biol Chem. 2001;276(37):34594–9.

    CAS  PubMed  Google Scholar 

  127. Dick GM, Sanders KM. (Xeno)estrogen sensitivity of smooth muscle BK channels conferred by the regulatory beta1 subunit: a study of beta1 knockout mice. J Biol Chem. 2001;276(48):44835–40.

    CAS  PubMed  Google Scholar 

  128. Perez GJ. Dual effect of tamoxifen on arterial KCa channels does not depend on the presence of the beta1 subunit. J Biol Chem. 2005;280(23):21739–47.

    CAS  PubMed  Google Scholar 

  129. Maher J, et al. Smooth muscle relaxation and activation of the large conductance Ca++-activated K+ (BKCa) channel by novel oestrogens. Br J Pharmacol. 2013;169(5):1153–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Holzmann S, et al. Pharmacologic differentiation between endothelium-dependent relaxations sensitive and resistant to nitro-L-arginine in coronary arteries. J Cardiovasc Pharmacol. 1994;23(5):747–56.

    CAS  PubMed  Google Scholar 

  131. Gluais P, et al. Role of SKCa and IKCa in endothelium-dependent hyperpolarizations of the guinea-pig isolated carotid artery. Br J Pharmacol. 2005;144(4):477–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Srivastava S, et al. Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol Biol Cell. 2006;17(1):146–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Srivastava S, et al. The phosphatidylinositol 3-phosphate phosphatase myotubularin-related protein 6 (MTMR6) is a negative regulator of the Ca2+-activated K+ channel KCa3.1. Mol Cell Biol. 2005;25(9):3630–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bondarenko AI, Malli R, Graier WF. The GPR55 agonist lysophosphatidylinositol directly activates intermediate-conductance Ca2+-activated K+ channels. Pflugers Arch. 2011;462(2):245–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Schilling T, et al. Lysophospholipids induce membrane hyperpolarization in microglia by activation of IKCa1 Ca2+-dependent K+ channels. Neuroscience. 2002;109(4):827–35.

    CAS  PubMed  Google Scholar 

  136. Furian AF, et al. Nitric oxide and potassium channels mediate GM1 ganglioside-induced vasorelaxation. Naunyn Schmiedebergs Arch Pharmacol. 2009;380(6):487–95.

    CAS  PubMed  Google Scholar 

  137. Weston AH, et al. Bradykinin-induced, endothelium-dependent responses in porcine coronary arteries: involvement of potassium channel activation and epoxyeicosatrienoic acids. Br J Pharmacol. 2005;145(6):775–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Large WA, Wang Q. Characteristics and physiological role of the Ca2+-activated Cl conductance in smooth muscle. Am J Physiol. 1996;271(2 Pt 1):C435–54.

    CAS  PubMed  Google Scholar 

  139. Pritchard HA, et al. Inhibitory role of phosphatidylinositol 4,5-bisphosphate on TMEM16A-encoded calcium-activated chloride channels in rat pulmonary artery. Br J Pharmacol. 2014;171(18):4311–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Gao SB, et al. Cerebrosides of baifuzi, a novel potential blocker of calcium-activated chloride channels in rat pulmonary artery smooth muscle cells. Cell Biol Int. 2007;31(9):908–15.

    CAS  PubMed  Google Scholar 

  141. Sones WR, et al. Cholesterol depletion alters amplitude and pharmacology of vascular calcium-activated chloride channels. Cardiovasc Res. 2010;87(3):476–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Clapham DE. TRP channels as cellular sensors. Nature. 2003;426(6966):517–24.

    CAS  PubMed  Google Scholar 

  143. Nilius B, Flockerzi V. Mammalian transient receptor potential (TRP) cation channels. Preface. Handb Exp Pharmacol. 2014;223:v–vi.

    PubMed  Google Scholar 

  144. Walker RL, Hume JR, Horowitz B. Differential expression and alternative splicing of TRP channel genes in smooth muscles. Am J Physiol Cell Physiol. 2001;280(5):C1184–92.

    CAS  PubMed  Google Scholar 

  145. Hernandez-Garcia E, Rosenbaum T. Lipid modulation of thermal transient receptor potential channels. Curr Top Membr. 2014;74:135–80.

    PubMed  Google Scholar 

  146. Yue Z, et al. Role of TRP channels in the cardiovascular system. Am J Physiol Heart Circ Physiol. 2015;308(3):H157–82.

    CAS  PubMed  Google Scholar 

  147. Brayden JE, et al. Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol. 2008;35(9):1116–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Large WA, Saleh SN, Albert AP. Role of phosphoinositol 4,5-bisphosphate and diacylglycerol in regulating native TRPC channel proteins in vascular smooth muscle. Cell Calcium. 2009;45(6):574–82.

    CAS  PubMed  Google Scholar 

  149. Earley S. Endothelium-dependent cerebral artery dilation mediated by transient receptor potential and Ca2+-activated K+ channels. J Cardiovasc Pharmacol. 2011;57(2):148–53.

    CAS  PubMed  Google Scholar 

  150. Earley S. TRPA1 channels in the vasculature. Br J Pharmacol. 2012;167(1):13–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol. 2007;292(6):H2613–22.

    CAS  PubMed  Google Scholar 

  152. Saleh SN, Albert AP, Large WA. Obligatory role for phosphatidylinositol 4,5-bisphosphate in activation of native TRPC1 store-operated channels in vascular myocytes. J Physiol. 2009;587(Pt 3):531–40.

    CAS  PubMed  Google Scholar 

  153. Ju M, et al. Ins(1,4,5)P3 interacts with PIP2 to regulate activation of TRPC6/C7 channels by diacylglycerol in native vascular myocytes. J Physiol. 2010;588(Pt 9):1419–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Morales-Lazaro SL, Rosenbaum T. A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci. 2015;125C:15–24.

    Google Scholar 

  155. Ingueneau C, et al. Caveolin-1 sensitizes vascular smooth muscle cells to mildly oxidized LDL-induced apoptosis. Biochem Biophys Res Commun. 2008;369(3):889–93.

    CAS  PubMed  Google Scholar 

  156. So I, et al. Lysophosphatidylcholine, a component of atherogenic lipoproteins, induces the change of calcium mobilization via TRPC ion channels in cultured human corporal smooth muscle cells. Int J Impot Res. 2005;17(6):475–83.

    CAS  PubMed  Google Scholar 

  157. Al-Shawaf E, et al. Short-term stimulation of calcium-permeable transient receptor potential canonical 5-containing channels by oxidized phospholipids. Arterioscler Thromb Vasc Biol. 2010;30(7):1453–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Sullivan MN, et al. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal. 2015;8(358):ra2.

    PubMed  PubMed Central  Google Scholar 

  159. Slish DF, Welsh DG, Brayden JE. Diacylglycerol and protein kinase C activate cation channels involved in myogenic tone. Am J Physiol Heart Circ Physiol. 2002;283(6):H2196–201.

    CAS  PubMed  Google Scholar 

  160. Inoue R, et al. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha1-adrenoceptor-activated Ca2+-permeable cation channel. Circ Res. 2001;88(3):325–32.

    CAS  PubMed  Google Scholar 

  161. Jung S, et al. TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells. Am J Physiol Cell Physiol. 2002;282(2):C347–59.

    CAS  PubMed  Google Scholar 

  162. Earley S, et al. TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res. 2005;97(12):1270–9.

    CAS  PubMed  Google Scholar 

  163. Watanabe H, et al. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature. 2003;424(6947):434–8.

    CAS  PubMed  Google Scholar 

  164. Jaggar JH, et al. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol. 2000;278(2):C235–56.

    CAS  PubMed  Google Scholar 

  165. McCarron JG, et al. Origin and mechanisms of Ca2+ waves in smooth muscle as revealed by localized photolysis of caged inositol 1,4,5-trisphosphate. J Biol Chem. 2004;279(9):8417–27.

    CAS  PubMed  Google Scholar 

  166. Santana LF, Navedo MF. Molecular and biophysical mechanisms of Ca2+ sparklets in smooth muscle. J Mol Cell Cardiol. 2009;47(4):436–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  167. Foskett JK, et al. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev. 2007;87(2):593–658.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Seo MD, et al. Structural insights into endoplasmic reticulum stored calcium regulation by inositol 1,4,5-trisphosphate and ryanodine receptors. Biochim Biophys Acta. 2014;1853(9):1980–91.

    PubMed  Google Scholar 

  169. Zalk R, Lehnart SE, Marks AR. Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem. 2007;76:367–85.

    CAS  PubMed  Google Scholar 

  170. Fleischer S. Personal recollections on the discovery of the ryanodine receptors of muscle. Biochem Biophys Res Commun. 2008;369(1):195–207.

    CAS  PubMed  Google Scholar 

  171. Fill M, Copello JA. Ryanodine receptor calcium release channels. Physiol Rev. 2002;82(4):893–922.

    CAS  PubMed  Google Scholar 

  172. Vaithianathan T, et al. Subtype identification and functional characterization of ryanodine receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol. 2010;299(2):C264–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Dahan D, et al. Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats. Am J Physiol Lung Cell Mol Physiol. 2012;303(9):L824–33.

    CAS  PubMed  Google Scholar 

  174. Silswal N, et al. Phosphatidylinositol 3,5-bisphosphate increases intracellular free Ca2+ in arterial smooth muscle cells and elicits vasocontraction. Am J Physiol Heart Circ Physiol. 2011;300(6):H2016–26.

    CAS  PubMed  Google Scholar 

  175. Ellinsworth DC, et al. Interactions between thromboxane A2, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res. 2014;102(1):9–16.

    CAS  PubMed  Google Scholar 

  176. Moss NG, et al. Thromboxane-induced renal vasoconstriction is mediated by the ADP-ribosyl cyclase CD38 and superoxide anion. Am J Physiol Renal Physiol. 2013;305(6):F830–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Chalmers S, et al. Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium. 2007;42(4–5):447–66.

    CAS  PubMed  Google Scholar 

  178. Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol. 2012;302(11):H2190–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Kandasamy K, et al. Lipopolysaccharide induces endoplasmic store Ca2+-dependent inflammatory responses in lung microvessels. PLoS One. 2013;8(5):e63465.

    CAS  PubMed  PubMed Central  Google Scholar 

  180. AlSuleimani YM, Hiley CR. Mechanisms of vasorelaxation induced by oleoylethanolamide in the rat small mesenteric artery. Eur J Pharmacol. 2013;702(1–3):1–11.

    CAS  PubMed  Google Scholar 

  181. Pantazaka E, Papadimitriou E. Chondroitin sulfate-cell membrane effectors as regulators of growth factor-mediated vascular and cancer cell migration. Biochim Biophys Acta. 2014;1840(8):2643–50.

    CAS  PubMed  Google Scholar 

  182. Snetkov VA, et al. Mechanisms of the prostaglandin F2alpha-induced rise in [Ca2+]i in rat intrapulmonary arteries. J Physiol. 2006;571(Pt 1):147–63.

    CAS  PubMed  Google Scholar 

  183. Zheng YM, et al. Heterogeneous gene expression and functional activity of ryanodine receptors in resistance and conduit pulmonary as well as mesenteric artery smooth muscle cells. J Vasc Res. 2008;45(6):469–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  184. Van Assche T, et al. Altered Ca2+ handling of smooth muscle cells in aorta of apolipoprotein E-deficient mice before development of atherosclerotic lesions. Cell Calcium. 2007;41(3):295–302.

    PubMed  Google Scholar 

  185. Hammoud Y, Rice T, Mackrill JJ. Oxysterols modulate calcium signalling in the A7r5 aortic smooth muscle cell-line. Biochimie. 2013;95(3):568–77.

    CAS  PubMed  Google Scholar 

  186. Adebiyi A, Narayanan D, Jaggar JH. Caveolin-1 assembles type 1 inositol 1,4,5-trisphosphate receptors and canonical transient receptor potential 3 channels into a functional signaling complex in arterial smooth muscle cells. J Biol Chem. 2011;286(6):4341–8.

    CAS  PubMed  Google Scholar 

  187. Putney JW. Origins of the concept of store-operated calcium entry. Front Biosci (Schol Ed). 2011;3:980–4.

    Google Scholar 

  188. Inoue R, Mori Y. Molecular candidates for capacitative and non-capacitative Ca2+ entry in smooth muscle. Novartis Found Symp. 2002;246:81–90. discussion 221–7.

    CAS  PubMed  Google Scholar 

  189. Trebak M. STIM/Orai signalling complexes in vascular smooth muscle. J Physiol. 2012;590(Pt 17):4201–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Welsh DG. The many faces of Orai. Circ Res. 2013;112(7):983–4.

    CAS  PubMed  Google Scholar 

  191. Hopson KP, et al. S1P activates store-operated calcium entry via receptor- and non-receptor-mediated pathways in vascular smooth muscle cells. Am J Physiol Cell Physiol. 2011;300(4):C919–26.

    CAS  PubMed  Google Scholar 

  192. Gonzalez-Cobos JC, et al. Store-independent Orai1/3 channels activated by intracrine leukotriene C4: role in neointimal hyperplasia. Circ Res. 2013;112(7):1013–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Zhang X, et al. Mechanisms of STIM1 activation of store-independent leukotriene C4-regulated Ca2+ channels. Mol Cell Biol. 2013;33(18):3715–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zhang W, et al. Leukotriene-C4 synthase, a critical enzyme in the activation of store-independent Orai1/Orai3 channels, is required for neointimal hyperplasia. J Biol Chem. 2015;290(8):5015–27.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex M. Dopico M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dopico, A.M., Bukiya, A.N., Kuntamallappanavar, G. (2016). Membrane Lipids and Modulation of Vascular Smooth Muscle Ion Channels. In: Levitan, PhD, I., Dopico, MD, PhD, A. (eds) Vascular Ion Channels in Physiology and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-29635-7_16

Download citation

Publish with us

Policies and ethics