Skip to main content

Lysosomal Transient Receptor Potential Mucolipin (TRPML) Channels in Vascular Regulation and Diseases

  • Chapter
  • First Online:
Vascular Ion Channels in Physiology and Disease

Abstract

Transient Receptor Potential Mucolipin 1 (TRPML1) channel protein, one of the TRPML family members, is a Ca2+-permeable membrane channel with a predominant location on the late endo/lysosomes. In arterial myocytes, it has been found that this ligand-gated channel is sensitive to NAADP (Nicotinic Acid Adenine Dinucleotide Phosphate), a secondary Ca2+ messenger, to generate Ca2+ release from lysosomes followed by a global Ca2+ release response from the sarcoplasmic reticulum through Ca2+-induced Ca2+ release mechanism (CICR), which is referred to as an intracellular two-phase Ca2+ release. In coronary artery, recent studies demonstrated that NAADP-sensitive lysosomal TRPML1 channels can be activated by a variety of pro-pathogenic stimuli such as endothelin 1 (ET-1), reactive oxidative species (ROS), and death receptor ligand (FasL). The defects or derangement of the lysosomal TRPMLl channel activity have been implicated in vascular injury or diseases such as endothelial dysfunction, apoptosis and even atherosclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sun M, Goldin E, Stahl S, Falardeau JL, Kennedy JC, Acierno Jr JS, Bove C, Kaneski CR, Nagle J, Bromley MC, Colman M, Schiffmann R, Slaugenhaupt SA. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum Mol Genet. 2000;9:2471–8.

    Article  CAS  PubMed  Google Scholar 

  2. Yamaguchi S, Jha A, Li Q, Soyombo AA, Dickinson GD, Churamani D, Brailoiu E, Patel S, Muallem S. Transient receptor potential mucolipin 1 (TRPML1) and two-pore channels are functionally independent organellar ion channels. J Biol Chem. 2011;286:22934–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bach G. Mucolipin 1: endocytosis and cation channel—a review. Pflugers Arch. 2005;451:313–7.

    Article  CAS  PubMed  Google Scholar 

  4. LaPlante JM, Falardeau J, Sun M, Kanazirska M, Brown EM, Slaugenhaupt SA, Vassilev PM. Identification and characterization of the single channel function of human mucolipin-1 implicated in mucolipidosis type IV, a disorder affecting the lysosomal pathway. FEBS Lett. 2002;532:183–7.

    Article  CAS  PubMed  Google Scholar 

  5. LaPlante JM, Ye CP, Quinn SJ, Goldin E, Brown EM, Slaugenhaupt SA, Vassilev PM. Functional links between mucolipin-1 and Ca2+-dependent membrane trafficking in mucolipidosis IV. Biochem Biophys Res Commun. 2004;322:1384–91.

    Article  CAS  PubMed  Google Scholar 

  6. Bach G. Mucolipidosis type IV. Mol Genet Metab. 2001;73:197–203.

    Article  CAS  PubMed  Google Scholar 

  7. Kiselyov K, Chen J, Rbaibi Y, Oberdick D, Tjon-Kon-Sang S, Shcheynikov N, Muallem S, Soyombo A. TRP-ML1 is a lysosomal monovalent cation channel that undergoes proteolytic cleavage. J Biol Chem. 2005;280:43218–23.

    Article  CAS  PubMed  Google Scholar 

  8. Slaugenhaupt SA. The molecular basis of mucolipidosis type IV. Curr Mol Med. 2002;2:445–50.

    Article  CAS  PubMed  Google Scholar 

  9. Bargal R, Avidan N, Ben-Asher E, Olender Z, Zeigler M, Frumkin A, Raas-Rothschild A, Glusman G, Lancet D, Bach G. Identification of the gene causing mucolipidosis type IV. Nat Genet. 2000;26:118–23.

    Article  CAS  PubMed  Google Scholar 

  10. Bassi MT, Manzoni M, Monti E, Pizzo MT, Ballabio A, Borsani G. Cloning of the gene encoding a novel integral membrane protein, mucolipidin-and identification of the two major founder mutations causing mucolipidosis type IV. Am J Hum Genet. 2000;67:1110–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:165–217.

    Article  CAS  PubMed  Google Scholar 

  12. Dong XP, Cheng X, Mills E, Delling M, Wang F, Kurz T, Xu H. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature. 2008;455:992–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feng X, Huang Y, Lu Y, Xiong J, Wong CO, Yang P, Xia J, Chen D, Du G, Venkatachalam K, Xia X, Zhu MX. Drosophila TRPML forms PI(3,5)P2-activated cation channels in both endolysosomes and plasma membrane. J Biol Chem. 2014;289:4262–72.

    Article  CAS  PubMed  Google Scholar 

  14. Wang WY, Zhang XL, Guo Q, Xu HX. TRPML1: an ion channel in the lysosome. In: Nilius B, Flockerzi V, editors. Mammalian Transient Receptor Potential (TRP) cation channels, handbook of experimental pharmacology 222. Berlin Heidelberg: Springer-Verlag; 2014.

    Google Scholar 

  15. Dong XP, Wang X, Shen D, Chen S, Liu M, Wang Y, Mills E, Cheng X, Delling M, Xu H. Activating mutations of the TRPML1 channel revealed by proline-scanning mutagenesis. J Biol Chem. 2009;284:32040–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng X, Shen D, Samie M, Xu H. Mucolipins: intracellular TRPML1-3 channels. FEBS Lett. 2010;584:2013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puertollano R, Kiselyov K. TRPMLs: in sickness and in health. Am J Physiol Renal Physiol. 2009;296:F1245–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang F, Li PL. Reconstitution and characterization of a nicotinic acid adenine dinucleotide phosphate (NAADP)-sensitive Ca2+ release channel from liver lysosomes of rats. J Biol Chem. 2007;282:25259–69.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang F, Jin S, Yi F, Li PL. TRP-ML1 functions as a lysosomal NAADP-sensitive Ca2+ release channel in coronary arterial myocytes. J Cell Mol Med. 2009;13:3174–85.

    Article  PubMed  Google Scholar 

  20. Chini EN, Beers KW, Dousa TP. Nicotinate adenine dinucleotide phosphate (NAADP) triggers a specific calcium release system in sea urchin eggs. J Biol Chem. 1995;270:3216–23.

    Article  CAS  PubMed  Google Scholar 

  21. Lee HC, Aarhus R. A derivative of NADP mobilizes calcium stores insensitive to inositol trisphosphate and cyclic ADP-ribose. J Biol Chem. 1995;270:2152–7.

    Article  CAS  PubMed  Google Scholar 

  22. Ge ZD, Li PL, Chen YF, Gross GJ, Zou AP. Myocardial ischemia and reperfusion reduce the levels of cyclic ADP-ribose in rat myocardium. Basic Res Cardiol. 2002;97:312–9.

    Article  CAS  PubMed  Google Scholar 

  23. Ge ZD, Zhang DX, Chen YF, Yi FX, Zou AP, Campbell WB, Li PL. Cyclic ADP-ribose contributes to contraction and Ca2+ release by M1 muscarinic receptor activation in coronary arterial smooth muscle. J Vasc Res. 2003;40:28–36.

    Article  CAS  PubMed  Google Scholar 

  24. Lee HC, Aarhus R. Functional visualization of the separate but interacting calcium stores sensitive to NAADP and cyclic ADP-ribose. J Cell Sci. 2000;113(Pt 24):4413–20.

    CAS  PubMed  Google Scholar 

  25. Li PL, Tang WX, Valdivia HH, Zou AP, Campbell WB. cADP-ribose activates reconstituted ryanodine receptors from coronary arterial smooth muscle. Am J Physiol Heart Circ Physiol. 2001;280:H208–15.

    CAS  PubMed  Google Scholar 

  26. Soares S, Thompson M, White T, Isbell A, Yamasaki M, Prakash Y, Lund FE, Galione A, Chini EN. NAADP as a second messenger: neither CD38 nor base-exchange reaction are necessary for in vivo generation of NAADP in myometrial cells. Am J Physiol Cell Physiol. 2007;292:C227–39.

    Article  CAS  PubMed  Google Scholar 

  27. Xu M, Zhang Y, Xia M, Li XX, Ritter JK, Zhang F, Li PL. NAD(P)H oxidase-dependent intracellular and extracellular O2*- production in coronary arterial myocytes from CD38 knockout mice. Free Radic Biol Med. 2012;52:357–65.

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Xia M, Li PL. Lysosome-dependent Ca(2+) release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts. Am J Physiol Cell Physiol. 2010;298:C1209–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology. 2014;29:343–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kinnear NP, Wyatt CN, Clark JH, Calcraft PJ, Fleischer S, Jeyakumar LH, Nixon GF, Evans AM. Lysosomes co-localize with ryanodine receptor subtype 3 to form a trigger zone for calcium signalling by NAADP in rat pulmonary arterial smooth muscle. Cell Calcium. 2008;44:190–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang F, Zhang G, Zhang AY, Koeberl MJ, Wallander E, Li PL. Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes. Am J Physiol Heart Circ Physiol. 2006;291:H274–82.

    Article  CAS  PubMed  Google Scholar 

  32. Xu M, Li X, Walsh SW, Zhang Y, Abais JM, Boini KM, Li PL. Intracellular two-phase Ca2+ release and apoptosis controlled by TRP-ML1 channel activity in coronary arterial myocytes. Am J Physiol Cell Physiol. 2013;304:C458–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fameli N, Ogunbayo OA, van Breemen C, Evans AM. Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Res. 2014;3:93.

    PubMed  PubMed Central  Google Scholar 

  34. Kinnear NP, Boittin FX, Thomas JM, Galione A, Evans AM. Lysosome-sarcoplasmic reticulum junctions. A trigger zone for calcium signaling by nicotinic acid adenine dinucleotide phosphate and endothelin-1. J Biol Chem. 2004;279:54319–26.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu MX, Ma J, Parrington J, Calcraft PJ, Galione A, Evans AM. Calcium signaling via two-pore channels: local or global, that is the question. Am J Physiol Cell Physiol. 2010;298:C430–41.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang F, Xu M, Han WQ, Li PL. Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1(−/−) cells. Am J Physiol Cell Physiol. 2011;301:C421–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fleckenstein-Grun G, Frey M, Thimm F, Hofgartner W, Fleckenstein A. Calcium overload—an important cellular mechanism in hypertension and arteriosclerosis. Drugs. 1992;44 Suppl 1:23–30.

    Article  PubMed  Google Scholar 

  38. Wong CO, Li R, Montell C, Venkatachalam K. Drosophila TRPML is required for TORC1 activation. Curr Biol. 2012;22:1616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Venkatachalam K, Wong CO, Montell C. Feast or famine: role of TRPML in preventing cellular amino acid starvation. Autophagy. 2013;9:98–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vergarajauregui S, Connelly PS, Daniels MP, Puertollano R. Autophagic dysfunction in mucolipidosis type IV patients. Hum Mol Genet. 2008;17:2723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martina JA, Lelouvier B, Puertollano R. The calcium channel mucolipin-3 is a novel regulator of trafficking along the endosomal pathway. Traffic. 2009;10:1143–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim HJ, Soyombo AA, Tjon-Kon-Sang S, So I, Muallem S. The Ca(2+) channel TRPML3 regulates membrane trafficking and autophagy. Traffic. 2009;10:1157–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pryor PR, Mullock BM, Bright NA, Gray SR, Luzio JP. The role of intraorganellar Ca(2+) in late endosome-lysosome heterotypic fusion and in the reformation of lysosomes from hybrid organelles. J Cell Biol. 2000;149:1053–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Luzio JP, Bright NA, Pryor PR. The role of calcium and other ions in sorting and delivery in the late endocytic pathway. Biochem Soc Trans. 2007;35:1088–91.

    Article  CAS  PubMed  Google Scholar 

  45. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss III JF, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA. Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science. 1997;277:228–31.

    Article  CAS  PubMed  Google Scholar 

  46. Carstea ED, Polymeropoulos MH, Parker CC, Detera-Wadleigh SD, O'Neill RR, Patterson MC, Goldin E, Xiao H, Straub RE, Vanier MT, et al. Linkage of Niemann-Pick disease type C to human chromosome 18. Proc Natl Acad Sci U S A. 1993;90:2002–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liscum L, Sturley SL. Intracellular trafficking of Niemann-Pick C proteins 1 and 2: obligate components of subcellular lipid transport. Biochim Biophys Acta. 2004;1685:22–7.

    Article  CAS  PubMed  Google Scholar 

  48. Haley NJ, Shio H, Fowler S. Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. I. Resolution of aortic cell populations by metrizamide density gradient centrifugation. Lab Invest. 1977;37:287–96.

    Article  CAS  PubMed  Google Scholar 

  49. Jerome WG, Cash C, Webber R, Horton R, Yancey PG. Lysosomal lipid accumulation from oxidized low density lipoprotein is correlated with hypertrophy of the Golgi apparatus and trans-Golgi network. J Lipid Res. 1998;39:1362–71.

    CAS  PubMed  Google Scholar 

  50. Yancey PG, Jerome WG. Lysosomal sequestration of free and esterified cholesterol from oxidized low density lipoprotein in macrophages of different species. J Lipid Res. 1998;39:1349–61.

    CAS  PubMed  Google Scholar 

  51. Yancey PG, Miles S, Schwegel J, Jerome WG. Uptake and trafficking of mildly oxidized LDL and acetylated LDL in THP-1 cells does not explain the differences in lysosomal metabolism of these two lipoproteins. Microsc Microanal. 2002;8:81–93.

    Article  CAS  PubMed  Google Scholar 

  52. Jerome WG. Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. Rejuvenation Res. 2006;9:245–55.

    Article  CAS  PubMed  Google Scholar 

  53. Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997;277:232–5.

    Article  CAS  PubMed  Google Scholar 

  54. Butler JD, Vanier MT, Pentchev PG. Niemann-Pick C disease: cystine and lipids accumulate in the murine model of this lysosomal cholesterol lipidosis. Biochem Biophys Res Commun. 1993;196:154–9.

    Article  CAS  PubMed  Google Scholar 

  55. te Vruchte D, Lloyd-Evans E, Veldman RJ, Neville DC, Dwek RA, Platt FM, van Blitterswijk WJ, Sillence DJ. Accumulation of glycosphingolipids in Niemann-Pick C disease disrupts endosomal transport. J Biol Chem. 2004;279:26167–75.

    Article  Google Scholar 

  56. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368:1845–6.

    Article  CAS  PubMed  Google Scholar 

  57. Martinet W, Knaapen MW, Kockx MM, De Meyer GR. Autophagy in cardiovascular disease. Trends Mol Med. 2007;13:482–91.

    Article  CAS  PubMed  Google Scholar 

  58. Martinet W, De Meyer GR. Autophagy in atherosclerosis. Curr Atheroscler Rep. 2008;10:216–23.

    Article  CAS  PubMed  Google Scholar 

  59. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. Circ Res. 2009;104:150–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cao DJ, Gillette TG, Hill JA. Cardiomyocyte autophagy: remodeling, repairing, and reconstructing the heart. Curr Hypertens Rep. 2009;11:406–11.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gottlieb RA, Mentzer RM. Autophagy during cardiac stress: joys and frustrations of autophagy. Annu Rev Physiol. 2010;72:45–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nemchenko A, Chiong M, Turer A, Lavandero S, Hill JA. Autophagy as a therapeutic target in cardiovascular disease. J Mol Cell Cardiol. 2011;51:584–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Salabei JK, Hill BG. Implications of autophagy for vascular smooth muscle cell function and plasticity. Free Radic Biol Med. 2013;65:693–703.

    Article  CAS  PubMed  Google Scholar 

  64. Geer JC, Mc Jr GH, Strong JP. The fine structure of human atherosclerotic lesions. Am J Pathol. 1961;38:263–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Parker F, Odland GF. A light microscopic, histochemical and electron microscopic study of experimental atherosclerosis in rabbit coronary artery and a comparison with rabbit aorta atherosclerosis. Am J Pathol. 1966;48:451–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Y, Xu M, Xia M, Li X, Boini KM, Wang M, Gulbins E, Ratz PH, Li PL. Defective autophagosome trafficking contributes to impaired autophagic flux in coronary arterial myocytes lacking CD38 gene. Cardiovasc Res. 2014;102:68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feng QZ, Zhao YS, Abdelwahid E. The role of Fas in the progression of ischemic heart failure: prohypertrophy or proapoptosis. Coron Artery Dis. 2008;19:527–34.

    Article  PubMed  Google Scholar 

  68. Henriques-Pons A, de Oliveira GM. Is the Fas/Fas-L pathway a promising target for treating inflammatory heart disease? J Cardiovasc Pharmacol. 2009;53:94–9.

    Article  CAS  PubMed  Google Scholar 

  69. Sata M, Suhara T, Walsh K. Vascular endothelial cells and smooth muscle cells differ in expression of Fas and Fas ligand and in sensitivity to Fas ligand-induced cell death: implications for vascular disease and therapy. Arterioscler Thromb Vasc Biol. 2000;20:309–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The works cited in the authors’ laboratory were supported by grants from the National Institutes of Health (HL075316, HL057244 and HL115068).

Author Disclosure Statement: none.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Lan Li M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, F., Li, PL. (2016). Lysosomal Transient Receptor Potential Mucolipin (TRPML) Channels in Vascular Regulation and Diseases. In: Levitan, PhD, I., Dopico, MD, PhD, A. (eds) Vascular Ion Channels in Physiology and Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-29635-7_10

Download citation

Publish with us

Policies and ethics