Skip to main content

Important Pre-requisites for the Existence of Lakes: Basin and Depression Forming Processes

  • Chapter
  • First Online:
Lakes of the World with Google Earth

Part of the book series: Coastal Research Library ((COASTALRL,volume 16))

  • 1038 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anima RJ (1990) Annotated bibliography on research conducted in coastal lagoons and estuaries of the Pacific Coast of the United States. USGS open file report, pp 90–347

    Google Scholar 

  • Bacon CR, Lanphere MA (2006) Eruptive history and geochronology of Mount Mazama and the Crater Lake region, Oregon. Geol Soc Am Bull 118:1331–1359

    Article  Google Scholar 

  • Barber DC, Dyke A, Hillaire-Marcel C et al (1999) Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400:344–348

    Article  CAS  Google Scholar 

  • Barnett PJ (1985) Glacial retreat and lake levels, north-central Lake Erie Lake Basin, Ontario. Quaternary Evolution of the Great Lakes. Geol Assoc Can Spec Pap 30:185–194

    Google Scholar 

  • Beach T, Luzzadder-Beach S, Dunning N et al (2008) Human and natural impacts on fluvial and karst depressions of the Maya Lowlands. Geomorphology 101:308–331

    Article  Google Scholar 

  • Bergner AGN, Strecker MR, Trauth MH et al (2009) Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa. Quat Sci Rev 28:2804–2816

    Article  Google Scholar 

  • Bird ECF (2010) Encyclopedia of the World’s coastal landforms, vol 1. Springer, Dordrecht, p 485

    Book  Google Scholar 

  • Boamah D, Koeberl C (2003) Geology and geochemistry of shallow drill cores from the Bosumtwi impact structure, Ghana. Meteorit Planet Sci 38:1137–1159

    Article  CAS  Google Scholar 

  • Botts L, Krushelnicki B (1995) The Great lakes: an environmental atlas and resource book. United States Environmental Protection Agency and Government of Canada, 3rd edn, Available via: http://www.epa.gov/grtlakes/atlas/index.html. Accessed 2 Sept 2015

  • Brenner M, Rosenmeier M, Hodell D, Curtis J (2002) Paleolimnology of the Maya Lowlands. Anc Mesoam 13:141–157

    Article  Google Scholar 

  • Burton MR, Dawyer GM, Granieri D (2013) Deep carbon emissions from volcanoes. Rev Mineral Geochem 75:323–354

    Article  CAS  Google Scholar 

  • Cohen A, Soreghan M, Scholz CA (1993) Estimating the age of formation of lakes: an example from Lake Tanganyika, East African rift system. Geology 21:511–514

    Article  CAS  Google Scholar 

  • Constantine J, Dunne T (2008) Meander cutoff and the controls on the production of oxbow lakes. Geology 36(1):23–26

    Article  Google Scholar 

  • Cruz JV, Franca Z (2006) Hydrogeochemistry of thermal and mineral water springs of the Azores archipelago (Portugal). J Volcanol Geotherm Res 151(4):382–398

    Article  CAS  Google Scholar 

  • Davydova NN, Arslanov KA, Khomutova VI et al (1996) Late- and postglacial history of lakes of the Karelian Isthmus. Hydrobiologia 322(1–3):199–204

    Article  Google Scholar 

  • Delmelle P, Bernard A (1999) Volcanic lakes. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, San Diego

    Google Scholar 

  • Delvaux D, Moyer R, Stapel G et al (1997) Paleostress reconstructions and geodynamics of the Baikal region, Central Asia, Part 2, Cenozoic rifting. Tectonophysics 282:1–38

    Article  Google Scholar 

  • Dunning NP, Scarborough V, Valdez F Jr et al (1999) Temple mountains, sacred lakes, and fertile fields: ancient Maya Landscapes in Northwestern Belize. Antiquity 73:650–660

    Google Scholar 

  • Ferrière L, Koeberl C, Ivanov BA et al (2008) Shock metamorphism of bosumtwi impact crater rocks, shock attenuation, and uplift formation. Science 322(5908):1678–1681

    Article  Google Scholar 

  • Fisher TG (2003) Chronology of glacial Lake Agassiz meltwater routed to the Gulf of Mexico. Quat Res 59(2):271–276

    Article  Google Scholar 

  • Fisher TG (2004) River Warren boulders, Minnesota, USA: catastrophic paleoflow indicators in the southern spillway of glacial Lake Agassiz. Boreas 33(4):349–358

    Article  Google Scholar 

  • Fisher TG, Smith DG, Andrews JT (2002) Preboreal oscillation caused by a glacial Lake Agassiz flood. Quat Sci Rev 21:873–878

    Article  Google Scholar 

  • Folco L, DiMartino M, El Barkooky A et al (2010) The Kamil crater in Egypt. Science 329(5993):804

    Article  CAS  Google Scholar 

  • Fredriksson K (1973) Lonar lake, India: an impact crater in basalt. Science 180(4088):862–864

    Article  CAS  Google Scholar 

  • Gaidos E, Lanoil B, Thorsteinsson T et al (2004) A viable microbial community in a subglacial volcanic crater lake, Iceland. Astrobiology 4(3):32–44

    Article  Google Scholar 

  • Gibson JJ, Prowse TD, Peters DL (2006) Partitioning impacts of climate and regulation on water level variability in Great Slave Lake. J Hydrol 329(1):196

    Article  Google Scholar 

  • Grady W, Litteljohn BM, Damstra ES (2007) The Great Lakes: the natural history of a changing region, David Suzuki foundation series. Greystone Books, Vancouver

    Google Scholar 

  • Hart DE (2009) Morphodynamics of non-estuarine rivermouth lagoons on high-energy coasts. J Coast Res SI 56:1355–1359

    Google Scholar 

  • Hart DE, Bryan KR (2008) New Zealand coastal system boundaries, connections and management. N Z Geogr 64(2):129–143

    Article  Google Scholar 

  • Hodych JP, Dunning GR (1992) Did the Manicouagan impact trigger end-of-Triassic mass extinction? Geology 20:51–54

    Article  CAS  Google Scholar 

  • Holcombe TL, Warren JS, Taylor LA et al (1997) Lakefloor geomorphology of Western lake Erie. J Great Lakes Res 23(2):190–201

    Article  Google Scholar 

  • Holcombe TL, Taylor LA, Reid DF et al (2003) Revised Lake Erie postglacial lake level history based on new detailed bathymetry. J Great Lakes Res 29(4):681–704

    Article  Google Scholar 

  • Hostetler SW, Bartlein PJ, Clark PU et al (2000) Simulated influences of Lake Agassiz on the climate of central North America 11,000 years ago. Nature 405(6784):334–337

    Article  CAS  Google Scholar 

  • Jones WB, Bacon M, Hastings DA (1981) The Lake Bosumtwi impact crater, Ghana. Geol Soc Am Bull 92:342–349

    Article  Google Scholar 

  • Kerr RA (1995) Chesapeake Bay impact crater confirmed. Science 269(5231):1672

    Article  CAS  Google Scholar 

  • Kirk RM, Lauder GA (2000) Significant coastal Lagoon systems in the South Island, New Zealand – coastal processes and lagoon mouth closure. Science for Conservation 146, Department of Conservation, Wellington

    Google Scholar 

  • Kjerfve B (ed) (1994) Coastal lagoon processes. Elsevier oceanography series, vol 60, Elsevier, Amsterdam

    Google Scholar 

  • Klimasauskas E, Bacon CR, Alexander J (2002) Mount Mazama and Crater lake: growth and destruction of a cascade volcano. U.S. Geological Survey Fact Sheet, 092–02

    Google Scholar 

  • Kusakabe M (ed) (1994) Geochemistry of Crater lakes. Geochem J 28(3):137–306

    Google Scholar 

  • Larson G, Schaetzl R (2001) Origin and evolution of the Great Lakes. J Great Lakes Res 27(4):518–546

    Article  Google Scholar 

  • Lee TM (1996) Hydrogeologic controls on the groundwater interactions with an acidic lake in karst terrain, Lake Barco, Florida. Water Resour Res 32(4):831–844

    Article  Google Scholar 

  • Leverington DW, Teller JT (2003) Paleotopographic reconstructions of the eastern outlets of glacial Lake Agassiz. Can J Earth Sci 40(9):1259–1278

    Article  Google Scholar 

  • Mann JA, Cherry RN (1970) Large springs of Florida’s “Sun Coast” Citrus and Hernando counties. Leaflet No. 9, Florida Department of Natural Resources, Bureau of Geology

    Google Scholar 

  • Manville V, White JDL, Houghton BF et al (1999) Paleohydrology and sedimentology of a post–1.8 ka breakout flood from intracaldera Lake Taupo, North Island, New Zealand. Geol Soc Am Bull 111(10):1435–1447

    Article  Google Scholar 

  • Master S, Reimold WU (2000) The impact cratering record of Africa: an updated inventory of proven, probable, possible, and discredited impact structures on the African continent. In: Catastrophic events and mass extinctions: impacts and beyond. LPI contribution no. 1053, Lunar and Planetary Institute, Houston, pp 133–134

    Google Scholar 

  • Miller JA (1986) Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina. USGS Prof paper 1403-B

    Google Scholar 

  • Miller JA (1997) Hydrogeology of Florida. In: Randazzo AF, Jones DS (eds) The geology of Florida. University Press of Florida, Gainesville, pp 69–88

    Google Scholar 

  • Montenegro-Guillén S (2003) Lake Cocibolca/Nicaragua. Lake basin management initiative: experience and lessons learned brief. LBMI regional workshop for Europe, Central Asia and the Americas. Saint Michael’s College, Colchester, Vermont, pp 1–29

    Google Scholar 

  • Motz LH (1998) Vertical leakage and vertically averaged vertical conductance for Karst Lakes in Florida. Water Resour Res 34(2):159–167

    Article  Google Scholar 

  • Murton JB, Bateman MD, Dallimore SR et al (2010) Identification of Younger Dryas outburst flood path from lake Agassiz to the Arctic ocean. Nature 464(7289):740–743

    Article  CAS  Google Scholar 

  • Osinski GR, Spray JG, Lee P (2001) Impact-induced hydrothermal activity within the Haughton impact structure, arctic Canada: generation of a transient, warm, wet oasis. Meteorit Planet Sci 36:731–745

    Article  CAS  Google Scholar 

  • Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58(7):526–538

    Article  Google Scholar 

  • Perez NM, Hernandez PA, Padilla G et al (2011) Global CO2 emission from volcanic lakes. Geology 39:235–238

    Article  CAS  Google Scholar 

  • Perkins S (2002) Once upon a lake. Sci News 162(18):283–284

    Article  Google Scholar 

  • Pirajno F, Hawke P, Glikson AY, Haines PW, Uysal T (2003) Shoemaker impact structure, Western Australia. Aust J Earth Sci 50:775–796

    Article  CAS  Google Scholar 

  • Rao CAN, Alfred JRB (2002) Bibliography of the Indian estuaries, lagoons and backwaters. Zoological Survey of India, Kalkutta

    Google Scholar 

  • Ribeiro DC, Martins G, Nogueira R et al (2008) Phosphorus fractionation in volcanic lake sediments (Azores – Portugal). Chemosphere 70:1256–1263

    Article  CAS  Google Scholar 

  • Robertson PB, Grieve RAF (1975) Impact structures in Canada: their recognition and characteristics. J R Astron Soc Can 69:1–2

    Google Scholar 

  • Rosenmeier M, Hodell D, Brenner M, Curtis J, Guilderson T (2002) A 4000-year lacustrine record of environmental change in the southern Maya Lowlands, Petén, Guatemala. Quat Res 57:183–190

    Article  CAS  Google Scholar 

  • Rouwet D, Tassi F, Mora-Amador R et al (2014) Past, present and future of volcanic lake monitoring. J Volcanol Geotherm Res 272:78–97

    Article  CAS  Google Scholar 

  • Rouwet D, Christenson B, Tassi F et al (eds) (2015) Volcanic lakes, Advances in volcanology. Springer, Dordrecht

    Google Scholar 

  • Rowe GL, Ohsawa S, Takano B et al (1992) Using crater lake chemistry to predict volcanic activity at Potis volcano, Costa Rica. Bull Volcanol 54:494–503

    Article  Google Scholar 

  • Schallenberg M, Schallenberg L (2012) Eutrophication of coastal Lagoons: a literature review. Prepared for Environment Southland. Hydrosphere Research Ltd, Dalmore

    Google Scholar 

  • Scheffers A, Scheffers S, Kelletat D (2012) The coastlines of the world with google earth – understanding our environment. Springer, Dordrecht

    Book  Google Scholar 

  • Schiefer S, Klinkenberg B (2004) The distribution and morphometry of lakes and reservoirs in British Columbia: a provincial inventory. Can Geogr/Le Géographe Canadien 48(3):345–355

    Article  Google Scholar 

  • Scott S (1990) Late Holocene fluctuations of Mono Lake, eastern California. Palaeogeor Palaeoclimatol Palaeoecol 78:333–381

    Article  Google Scholar 

  • Scott DL, Etheridge MA, Rosendahl BR (1992) Oblique-slip deformation in extensional terrains: a case study of the lakes Tanganyika and Malawi rift zones. Tectonics 11(5):998–1009

    Article  Google Scholar 

  • Sichrowsky U, Schabetsberger R, Sonntag B et al (2014) Limnological characterization of volcanic crater lakes on Uvea Island (Wallis and Futuna, South Pacific). Pac Sci 68(3):1–26

    Article  Google Scholar 

  • Siddiqi SZ (2008) Limnological profile of high-impact meteor Crater lake Lonar, Buldana, Maharashtra, India, an extreme hyprealkaline, saline habitat. In: Sengupta M, Dalwani R (eds) Proceedings of Taal 2007, The 12th world lake conference, pp 1597–1613

    Google Scholar 

  • Sinclair WC, Stewart JW, Knutilla RL, Gilboy AE, Miller RL (1985) Types, features and occurrence of sinkholes in the karst of westcentral Florida. USGS Water-Resources Investigations Report 4126

    Google Scholar 

  • Spray JG, Kelley SP, Rowley DB (1998) Evidence for a late Triassic multiple impact event on Earth. Nature 392:171–173

    Article  CAS  Google Scholar 

  • Talbot MR, Delibrias G (1977) Holocene variations in the level of Lake Bosumtwi, Ghana. Nature 268:722–724

    Article  Google Scholar 

  • Thorleifson LH (1996) Review of Lake Agassiz history. Sedimentology, geomorphology, and history of the Central Lake Agassiz Basin, Geological Association of Canada Field Trip Guidebook for GAC/MAC Joint Annual Meeting, pp 55–84

    Google Scholar 

  • Tihansky AB (1999) Sinkholes, west-central Florida – a link between surface water and ground water. In: Galloway D, Jones DR, Ingebritsen SE (eds) Land subsidence in the United States, vol 1182, USGS, circular., pp 121–141

    Google Scholar 

  • Tihansky AB, Knochenmus LA (2001) Karst features and hydrogeology in West-central Florida – a field perspective. In: Kuniansky EL (ed) USGS Karst interest group proceedings, water-resources investigations report 01–4011:198–211

    Google Scholar 

  • Valero-Garcés B, Morellon M, Moreno A et al (2014) Lacustrine carbonates of Iberian Karst lakes: sources, processes and depositional environments. Sediment Geol 299:1–29

    Article  Google Scholar 

  • Varekamp JC, Rowe GL Jr (eds) (2000) Crater lakes. J Volcanol Geotherm Res 97(1–4):1–508

    Google Scholar 

  • Waples JT, Eadie B, Squires M et al (2008) The Laurentian Great lakes. North American Continental Margins. In: Hales B et al (eds) American continental margins: a synthesis and planning workshop, Washington, DC, pp 73–81

    Google Scholar 

  • Wetzel RG (2001) Limnology: lake and river ecosystems, 3rd edn. Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Scheffers, A.M., Kelletat, D.H. (2016). Important Pre-requisites for the Existence of Lakes: Basin and Depression Forming Processes. In: Lakes of the World with Google Earth. Coastal Research Library, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-29617-3_2

Download citation

Publish with us

Policies and ethics