Geodynamical Setting for the Tholeiites of Misiones Province (North-eastern Argentina) in the Context of the PMP and the Alkaline Volcanism of Córdoba Province (Central Argentina)

  • Silvia Leonor LagorioEmail author
  • Haroldo Vizán
  • Silvana Evangelina Geuna
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


Different processes could have triggered magmatism during the Early Cretaceous in central and north-eastern Argentina. Distinct thermal processes could have possibly acted together in Paraná Magmatic Province (PMP): (1) the track of upwelling (strong upward heat flow) of a wide circuit of convection induced by a subduction in the western margin that cause the rifting of Western Gondwana and (2) a large amount of heat energy insulated by Pangea causing swelling and fragmentation of weak lithospheric zones, with high percentages of melting typical of the tholeiitic magmas. This volcanism must have emerged through lithospheric fracturing mainly in suture areas between old cratons, while South America plate was beginning to be dragged westward by a large convective roll. By contrast, the low volume of alkaline volcanic rocks in Sierra Chica of Córdoba (SCC) is in agreement with low melting degrees, in a geodynamic framework supporting edge-driven convection: (1) the presence of a large thickness contrast between the Río de La Plata craton and the Pampia terrain, (2) an environment of pull-apart basins and (3) a low rate of latitudinal and longitudinal velocity of South America.


Mantle convection Magmatism Alkaline basalts Tholeiitic basalts Edge-driven convection 


  1. Anderson DL (1982) Hotspots, polar wander, mesozoic convection and the Geoid. Nature 297:391–393CrossRefGoogle Scholar
  2. Anderson DL (1994) Superplumes or supercontinents? Geology 22:39–42CrossRefGoogle Scholar
  3. Anderson DL (2001) Top-down tectonics? Science 293:2016–2018CrossRefGoogle Scholar
  4. Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35:391–394CrossRefGoogle Scholar
  5. Dietz R, Holden JC (1970) Reconstruction of Pangea: break-up and dispersion of continents, permian to present. J Geophys Res 75(26):4939–4956CrossRefGoogle Scholar
  6. Favetto A, Pomposiello C, López de Luchi MG, Booker J (2008) 2D Magnetotelluric interpretation of the crust electrical resistivity across the Pampean—Río de la Plata suture, in central Argentina. Tectonophysics 459:54–65CrossRefGoogle Scholar
  7. Froidevaux C, Nataf HC (1981) Continental Drift: what driving mechanism? Geol Rundsch 70:166–176CrossRefGoogle Scholar
  8. Gurnis M (1988) Large-scale mantle convection and the aggregation and dispersal of supercontinents. Nature 332:695–699CrossRefGoogle Scholar
  9. Husson L, Conrad CP, Faccenna C (2012) Plate motions, Andean orogeny and volcanism above the South Atlantic convection cell. Earth Planet Sci Lett 317–318:126–135CrossRefGoogle Scholar
  10. King SD (2004) Understanding the edge-driven convection hypotheses., last revision March, 2004
  11. King SD, Anderson DL (1995) An alternative mechanism of flood basalt formation. Earth Planet Sci Lett 136:269–279CrossRefGoogle Scholar
  12. King SD, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296CrossRefGoogle Scholar
  13. Martino RD, Guereschi AB, Carignano CA, Calegari R, Manoni R (2014) La estructura de las cuencas extensionales cretácicas de las Sierras de Córdoba. In: Martino RD, Guereschi AB (eds) Geología y Recursos Naturales de la Provincia de Córdoba, Relatorio del 19° Congreso Geológico Argentino: 513-538. Asociación Geológica Argentina, CórdobaGoogle Scholar
  14. Masters G, Johnson S, Laske G, Bolton H (1996) A shear-velocity model of the mantle. Philos Transac Royal Soc Lond A 354:1385–1411CrossRefGoogle Scholar
  15. Missenard Y, Cadoux M (2011) Can Moroccan Atlas lithospheric thinning and volcanism be induced by edge-driven convection? Terra Nova. doi: 10.1111/j.1365-3121.2011.01033.x Google Scholar
  16. Nataf HC, Froidevaux C, Levrat JL, Rabinowicz M (1981) Laboratory convection experiments: Effect of lateral cooling and generation of instabilities in the horizontal boundary layers. J Geophys Res 86:6143–6154CrossRefGoogle Scholar
  17. Peate DW, Hawkesworth CJ (1996) Lithospheric to asthenospheric transition in low-Ti flood basalts from Southern Paraná, Brazil. Chem Geol 127:1–24CrossRefGoogle Scholar
  18. Rabinowicz M, Lago B, Froideveaux C (1980) Themal transfer between the continental asthenosphere and the oceanic subducting lithosphere: Its effect on subcontinental convection. J Geophys Res 85:1839–1853CrossRefGoogle Scholar
  19. Rocha-Júnior ERV, Puchtel IS, Marques LS, Walker RJ, Machado FB, Nardy AJR, Babinski M, Figueiredo AMG (2012) Re-Os isotope and highly siderophile element systematics of the parana continental flood basalts (Brazil). Earth Planet Sci Lett 337–338:164–173CrossRefGoogle Scholar
  20. Schimmel M, Asssumpçao M, Van Deccar JC (2003) Seismic velocity anomalies beneath SE Brazil from P and S wave travel time inversions. J Geophys Res 108(B4):2191. doi: 10.1029/2001JB000187 Google Scholar
  21. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJ, Domeier M, Gaina M, Tohver E, Meert J, McCausland PJL, Cocks RM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci Rev 114:325–368CrossRefGoogle Scholar
  22. Van der Voo R (1993) Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans, 411 pp. Cambridge University Press, CambridgeGoogle Scholar
  23. Vizán H, Lagorio SL (2011) Modelo geodinámico de los prcesos que generaron el volcanismo cretácico de Córdoba (Argentina) y la gran Provncia Ígnea Paraná, incluyendo el origen y evolución de la “pluma” Tristán. Geoacta 36:55–75Google Scholar
  24. White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7730CrossRefGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Silvia Leonor Lagorio
    • 1
    Email author
  • Haroldo Vizán
    • 2
  • Silvana Evangelina Geuna
    • 2
  1. 1.Instituto de Geología y Recursos MineralesServicio Geológico Minero Argentino (IGRM-SEGEMAR), Parque Tecnológico MigueleteSan Martín, Buenos AiresArgentina
  2. 2.IGEBA (CONICET-UBA)Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations