Advertisement

Introduction

  • Silvia Leonor LagorioEmail author
  • Haroldo Vizán
  • Silvana Evangelina Geuna
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

During the Early Cretaceous, a reorganization of lithospheric plates led to one of the major volcanic processes: the Paraná Magmatic Province (PMP) that covered an extensive region of Brazil, Paraguay, Uruguay and north-eastern Argentina. It was a tholeiitic event constituting a large igneous province (LIP). By contrast, an alkaline volcanism also occurred but it is volumetrically restricted, has a peripheral location with respect to this LIP and took place either prior as well as contemporary and posthumously to that large tholeiitic episode. Both volcanic events are Early Cretaceous and must be linked to the break-up of Western Gondwana. In the Province of Córdoba (central Argentina), alkaline volcanic rocks outcrop in Sierra Chica (SCC), and were generated under extensional conditions integrating a system of rifts. They are located about 150 km west of PMP basalts that are lying in the subsurface of Chaco-Paraná basin. Recent radiometric dating provided by other authors revealed ages of 134.7 ± 1 and 131.6 ± 2.3 Ma for PMP basalts, whereas interbedded acid rocks show 137.3 ± 1.8 and 134.3 ± 0.8 Ma, respectively. A new 40Ar/39Ar dating of 129 ± 1 Ma is here presented for the volcanism of SCC, indicating that it is slightly younger than that of  the PMP. Both volcanic events must have had different origins in the context of reorganization of geological plates during the Early Cretaceous.

Keywords

Tholeiitic basalts Alkaline basalts Cretaceous Paraná Córdoba Argentina 

References

  1. Bellieni G, Brotzu P, Comin-Chiaramonti P, Ernesto M, MelfiI AJ, Pacca G, Piccirillo EM (1984) Flood basalts to rhyolite suites in the Southern Paraná plateau (Brazil): paleomagnetism, petrogenesis and geodynamic implications. J Petrol 25(3):579–618Google Scholar
  2. Cejudo Ruiz R, Goguitchaivili A, Geuna SE, Alva-Valdivia L, Solé J, Morales J (2006) Early cretaceous absolute geomagnetic paleointensities from Córdoba province (Argentina). Earth Planets Space 58(10):1333–1339CrossRefGoogle Scholar
  3. Chebli GA, Spalletti LA, Rivarola D, de Elorriaga E, Webster R (2005) Cuencas Cretácicas de la Región Central de la Argentina. Frontera Exploratoria de la Argentina. In: Chebli GA, Coriñas JS, Spalletti LA, Legarreta L, Vallejo EL (eds), 6º Congreso de Exploración y Desarrollo de Hidrocarburos. IAPG, Buenos Aires, pp 193–215Google Scholar
  4. Coltice N, Phillips BR, Bertrand H, Ricard Y, Rey P (2007) Global warming of the mantle at the origin of flood basalts over supercontinents. Geology 35:391–394CrossRefGoogle Scholar
  5. Costa CH, Gardini CE, Chiesa JO, Ortiz Suárez AE, Ojeda GE, Rivarola DL, Tognelli GC, Strasser EN, Carugno Durán AO, Morla PN, Guerstein PG, Sales DA, Vinciguerra HM (2001) Hoja Geológica 3366-III, San Luis. Provincias de San Luis y Mendoza, vol 293. Instituto de Geología y Recursos Minerales, Servicio Geológico Minero Argentino. Boletín, Buenos Aires, p 67Google Scholar
  6. Erlank AJ, Marsh JS, Duncan AR, Miller R McG, Hawkesworth CJ, Betton PJ, Rex DC (1984) Geochemistry and petrogenesis of the Etendeka volcanic rocks from SWA/Namibia. In: Erlank AJ (ed) Petrogenesis of the volcanic rocks of the Karroo Province, vol 13. Special Publication, Geological Society of South Africa, South Africa, pp 195–246Google Scholar
  7. Ernesto M, Raposo MIB, Marques LS, Renne PR, Diogo LA, de Min A (1999) Paleomagnetism, geochemistry and 40Ar/39Ar dating of the North-Eastern Paraná Magmatic Province: tectonic implications. J Geodyn 28:321–340CrossRefGoogle Scholar
  8. Fodor RV (1987) Low- and high-TiO2 flood basalts of southern Brazil: origin from a picritic parentage and a common mantle source. Earth Planet Sci Lett 84:423–430CrossRefGoogle Scholar
  9. Gibson SA, Thompson RN, Dickin AP, Leonardos OH (1996) Erratum to “High-Ti and low-Ti mafic potassic magmas: Key to plume-litosphere interactions and continental flood-basalt genesis”. Earth Planet Sci Lett 141:325–341CrossRefGoogle Scholar
  10. Gibson SA, Thompson RN, Day JA (2006) Timescales and mechanism of plume lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Planet Sci Lett 251:1–17CrossRefGoogle Scholar
  11. Gordillo CE (1972) Petrografía y composición química de los basaltos de la sierra de Las Quijadas—San Luis—y sus relaciones con los basaltos cretácicos de Córdoba. Boletín de la Asociación Geológica de Córdoba 1(3–4):127–129 (Córdoba)Google Scholar
  12. Gordillo CE, Lencinas A (1967a) Geología y petrología del extremo norte de la Sierra de Los Cóndores, Córdoba. Boletín Academia Nacional de Ciencias 46(1):73–108 (Córdoba)Google Scholar
  13. Gordillo CE, Lencinas A (1967b) El basalto nefelínico de El Pungo, Córdoba. Boletín Academia Nacional de Ciencias 46(1):109–115 (Córdoba)Google Scholar
  14. Gordillo CE, Lencinas A (1969) Perfil geológico de la sierra Chica de Córdoba en la zona del río Los Molinos, con especial referencia a los diques traquibasálticos que la atraviesan. Boletín Academia Nacional de Ciencias 47:27–50 (Córdoba)Google Scholar
  15. Hawkesworth CJ, Gallager K, Kelly S, Mantovani MSM, Peate D, Regelous M, Rogers N (1992) Parana magmatism and the opening of the South Atlantic. In: Storey B, Alabaster A, Pankhurst R (eds) Magmatism and causes of Continental break- up, vol 68. Geological Society Special Publication, London, pp 221–240Google Scholar
  16. Iacumin M, De Min A, Piccirillo EM, Bellieni G (2003) Source mantle heterogeneity and its role in the genesis of Late Archean-Proterozoic (2.7–1.0 Ga) and Mesozoic (200 and 130 Ma) tholeiitic magmatism in the South American Platform. Earth Sci Rev 62:365–397CrossRefGoogle Scholar
  17. Janasi VA, Freitas VA, Heaman LH (2011) The onset of flood basalt volcanism, Northern Parana basin, Brazil: U-Pb baddeleyite/zircon age for a Chapeco-type dacyte. Earth Planet Sci Lett 302:147–153CrossRefGoogle Scholar
  18. Kay SM, Ramos VA (1996) El magmatismo cretácico de las sierras de Córdoba y sus implicancias tectónicas. 13° Congreso Geológico Argentino y 3° Congreso de Exploración de Hidrocarburos, vol 3. Actas, Buenos Aires, pp 453–464Google Scholar
  19. King SD, Anderson DL (1995) An alternative mechanism of flood basalt formation. Earth Planet Sci Lett 136:269–279CrossRefGoogle Scholar
  20. King SD, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296CrossRefGoogle Scholar
  21. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JB (2008) Synchronizing rock clocks of Earth history. Science 320:500–504CrossRefGoogle Scholar
  22. Lagorio SL (2008) Early Cretaceous alkaline volcanism of the Sierra Chica de Córdoba (Argentina): Mineralogy, geochemistry and petrogenesis. J S Am Earth Sci 26:152–171CrossRefGoogle Scholar
  23. Lagorio SL, Vizán H (2011) El volcanismo de Serra Geral en la Provincia de Misiones: aspectos geoquímicos e interpretación de su génesis en el contexto de la Gran Provincia Ígnea Paraná-Etendeka-Angola. Su relación con el volcanismo alcalino de Córdoba (Argentina). Geoacta 36:27–53Google Scholar
  24. Linares E, Valencio DA (1974) Edades Potasio-Argón y paleomagnetismo de los diques traquibasálticos del río de Los Molinos, Córdoba, República Argentina. Revista de la Asociación Geológica Argentina 29(3):341–348Google Scholar
  25. Lucassen F, Escayola MP, Romer RL, Viramonte JG, Koch K, Franz G (2002) Isotopic composition of Late Mesozoic basic and ultrabasic rocks from the Andes (23–32°S)—implications for the Andean mantle. Contrib Miner Petrol 143:336–349CrossRefGoogle Scholar
  26. Marques LS, Dupre B, Piccirillo EM (1999) Mantle source compositions of the Parana Magmatic Province (Southern Brazil): evidence from trace element and Sr-Nd–Pb isotope geochemistry. J Geodyn 28:439–458CrossRefGoogle Scholar
  27. Martínez AN, Rivarola D, Strasser E, Giambiagi L, Rouquet MB, Tobares ML, Merlo M (2012) Petrografía y geoquímica preliminar de los basaltos cretácicos de la sierra de Las Quijadas y cerrillada de Las Cabras, provincia de San Luis, Argentina. Serie Correlación Geológica 28(1): 9-22. Aportes al Magmatismo y Metalogenia Asociada I, TucumánGoogle Scholar
  28. Marzoli A, Melluso L, Morra V, Renne PR, Sgrosso I, D’Antonio M, Duarte Morais L, Morais EAA, Ricci G (1999) Geochronology and petrology of Cretaceous basaltic magmatism in the Kwanza basin (Western Angola), and relationships with the Paraná-Etendeka continental flood basalt province. J Geodyn 28:341–356CrossRefGoogle Scholar
  29. Montelli R, Nolet G, Dahlen FA, Masters G (2006) A catalogue of deep mantle plumes: New results from finite-frecuency tomography. Geochem Geophys Geosyst 7(11):1–69CrossRefGoogle Scholar
  30. O’Connor JM, Duncan RA (1990) Evolution of the Walvis Ridge-Rio Grande rise hot spot system: Implications for African and South American plate motions over plumes. J Geophys Res 95(B11):17475–17502CrossRefGoogle Scholar
  31. Peate DW (1997) The Paraná-Etendeka Province. In: Mahoney JJ, Coffin MF (eds) Large igneous provinces: continental oceanic and planetary flood volcanism, vol 100. Geophysical Monograph American Geophysical Union, Boulder, Colorado, pp 215–245Google Scholar
  32. Piccirillo EM, Melfi AJ (1988) The mesozoic flood volcanism from the Paraná basin (Brazil): petrogenetic and geophysical aspects. Universidad de São Paulo, San Pablo, p 600Google Scholar
  33. Ramos VA (1999) Evolución tectónica de la Argentina. Instituto de Geología y Recursos Minerales, Geología Argentina, Anales 29(24):715–784, Buenos AiresGoogle Scholar
  34. Renne PR, Ernesto M, Pacca IG, Coe RS, Glen JM, Prévot M, Perrin M (1992) The age of Paraná flood volcanism, rifting of Gondwanaland, and Jurassic-Cretaceous boundary. Science 258:975–979CrossRefGoogle Scholar
  35. Renne PR, Deckart K, Ernesto M, Feraud G, Piccirillo EM (1996) Age of the Ponta Grossa dike swarm (Brazil) and implications to Paraná flood volcanism. Earth Planet Sci Lett 144:199–211CrossRefGoogle Scholar
  36. Rocha-Júnior ERV, Puchtel IS, Marques LS, Walker RJ, Machado FB, Nardy AJR, Babinski M, Figueiredo AMG (2012) Re–Os isotope and highly siderophile element systematics of the Parana Continental Flood Basalts (Brazil). Earth Planet Sci Lett 337–338:164–173CrossRefGoogle Scholar
  37. Rocha-Júnior ERV, Marques LS, Babinski M, Nardy AJR, Figueiredo AMG, Machado FB (2013) Sr-Nd–Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Parana Continental Flood Basalts (Brazil). J S Am Earth Sci 46:9–25CrossRefGoogle Scholar
  38. Rossello E, Mozetic ME (1999) Caracterización estructural y significado geotectónico de los depocentros cretácicos continentales del centro—oeste argentino. Boletim do 5º Simpósio sobre o Cretáceo do Brasil, UNESP—Campus de Rio Claro/SP: 107–113Google Scholar
  39. Thiede DS, Vasconcelos PM (2010) Paraná flood basalts: Rapid extrusion hypothesis confirmed by new 40Ar/39Ar results. Geology 38(8):747–750CrossRefGoogle Scholar
  40. Uliana MA, Biddle KT, Cerdan J (1990) Mesozoic extension and the formation of Argentine sedimentary basins. In: Tankard AJ, Balkwill HR (eds) Extensional tectonics and stratigraphy of the North Atlantic margins. American Asociation of Petroleum Geologists, Memoir 46:599–614, TulsaGoogle Scholar
  41. Webster RE, Chebli GA, Fischer FJ (2004) General Levalle basin, Argentina: A frontier Lower Cretaceous rift basin. American Asociation of Petroleum Geology Bulletin 88(5):627–652. Tulsa, OklahomaGoogle Scholar
  42. Wildner W, Santos JOS, Hartmann LA, McNaughton NJ (2006) Clímax final do vulcanismo Serra Geral em 135 Ma: primeiras idades U-Pb em zircão. 43º Congresso Brasileiro Geologia, Extended Abstracts, AracajuGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Silvia Leonor Lagorio
    • 1
    Email author
  • Haroldo Vizán
    • 2
  • Silvana Evangelina Geuna
    • 2
  1. 1.Instituto de Geología y Recursos MineralesServicio Geológico Minero Argentino (IGRM-SEGEMAR), Parque Tecnológico MigueleteSan Martín, Buenos AiresArgentina
  2. 2.IGEBA (CONICET-UBA)Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations