Advertisement

XQuery-Based Query Processing in Open Street Map

  • Jesús M. Almendros-JiménezEmail author
  • Antonio Becerra-Terón
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 582)

Abstract

Volunteered geographic information (VGI) makes available a very large resource of geographic data. The exploitation of data coming from such resources requires an additional effort in the form of tools and effective processing techniques. One of the most established VGI is Open Street Map (OSM) offering data of urban and rural maps from the earth. In this paper we present a library for querying OSM with XQuery. This library is based on the well-known spatial operators defined by Clementini and Egenhofer, providing a repertoire of XQuery functions which encapsulate the search on the XML document representing a layer of OSM, and make the definition of queries on top of OSM layers easy. In essence, the library is equipped with a set of OSM Operators for OSM elements which, in combination with Higher Order facilities of XQuery, facilitates the composition of queries and the definition of keyword based search geo-localized queries. OSM data are indexed by an R-tree structure, in which OSM elements are enclosed by Minimum Bounding Rectangles (MBRs), in order to get shorter answer time.

References

  1. 1.
    Alkhateeb, F., Baget, J.F., Euzenat, J.: Extending SPARQL with regular expression patterns (for querying RDF). Web Semant. Sci. Serv. Agents World Wide Web 7(2), 57–73 (2011)CrossRefGoogle Scholar
  2. 2.
    Atzori, M.: Toward the web of functions: interoperable higher-order functions in SPARQL. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C., Vrandečić, D., Groth, P., Noy, N., Janowicz, K., Goble, C. (eds.) ISWC 2014, Part II. LNCS, vol. 8797, pp. 406–421. Springer, Heidelberg (2014)Google Scholar
  3. 3.
    Bamford, R., Borkar, V., Brantner, M., Fischer, P.M., Florescu, D., Graf, D., Kossmann, D., Kraska, T., Muresan, D., Nasoi, S., et al.: XQuery reloaded. Proc. VLDB Endowment 2(2), 1342–1353 (2009)CrossRefGoogle Scholar
  4. 4.
    Battle, R., Kolas, D.: Enabling the geospatial semantic web with Parliament and GeoSPARQL. Semant. Web 3(4), 355–370 (2012)Google Scholar
  5. 5.
    Bennett, J.: OpenStreetMap - Be your own cartographer. Packt Publishing Ltd. (2010)Google Scholar
  6. 6.
    Berglund, A., Boag, S., Chamberlin, D., Fernandez, M., Kay, M., Robie, J., Siméon, J.: XML path language (XPath) 2.0. W3C (2010)Google Scholar
  7. 7.
    Boucelma, O., Colonna, F.: GQuery: a query language for GML. In: Proceedings of the 24th Urban Data Management Symposium, pp. 27–29 (2004)Google Scholar
  8. 8.
    Clementini, E., Di Felice, P.: Spatial operators. ACM SIGMOD Rec. 29(3), 31–38 (2000)CrossRefGoogle Scholar
  9. 9.
    Egenhofer, M.J.: Spatial SQL: a query and presentation language. IEEE Trans. Knowl. Data Eng. 6(1), 86–95 (1994)CrossRefGoogle Scholar
  10. 10.
    Egenhofer, M.J.: Toward the semantic geospatial web. In: Proceedings of the 10th ACM International Symposium on Advances in Geographic Information Systems, pp. 1–4. ACM (2002)Google Scholar
  11. 11.
    Eiter, T., Schneider, P., Šimkus, M., Xiao, G.: Using OpenStreetMap data to create benchmarks for description logic reasoners. In: Proceedings of the 3rd International Workshop on OWL Reasoner Evaluation (ORE 2014). CEUR Workshop Proceedings, vol. 1207, pp. 51–57 (2014)Google Scholar
  12. 12.
    Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores (long version). In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013, Part II. LNCS, vol. 8219, pp. 343–359. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  13. 13.
    Goodchild, M.F.: Citizens as sensors: the world of volunteered geography. GeoJournal 69(4), 211–221 (2007)CrossRefGoogle Scholar
  14. 14.
    Goodchild, M.F., Li, L.: Assuring the quality of volunteered geographic information. Spat. Stat. 1, 110–120 (2012)CrossRefGoogle Scholar
  15. 15.
    Grun, C.: BaseX. The XML Database (2015). http://basex.org
  16. 16.
    Hadjieleftheriou, M., Manolopoulos, Y., Theodoridis, Y., Tsotras, V.J.: R-Trees – A dynamic index structure for spatial searching. In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 993–1002. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Haklay, M., Weber, P.: Openstreetmap: user-generated street maps. IEEE pervasive comput. 7(4), 12–18 (2008)CrossRefGoogle Scholar
  18. 18.
    Huang, C.H., Chuang, T.R., Deng, D.P., Lee, H.M.: Building GML-native web-based geographic information systems. Comput. Geosci. 35(9), 1802–1816 (2009)CrossRefGoogle Scholar
  19. 19.
    Kay, M.: Ten reasons why saxon xquery is fast. IEEE Data Eng. Bull. 31(4), 65–74 (2008)MathSciNetGoogle Scholar
  20. 20.
    Kolas, D.: A benchmark for spatial semantic web systems. In: International Workshop on Scalable Semantic Web Knowledge Base Systems (2008)Google Scholar
  21. 21.
    Sioutis, M., Nikolaou, C., Karpathiotakis, M., Kyzirakos, K., Koubarakis, M.: Data models and query languages for linked geospatial data. In: Eiter, T., Krennwallner, T. (eds.) Reasoning Web 2012. LNCS, vol. 7487, pp. 290–328. Springer, Heidelberg (2012)Google Scholar
  22. 22.
    Koubarakis, M., Kyzirakos, K.: Modeling and querying metadata in the semantic sensor web: the model stRDF and the query language stSPARQL. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 425–439. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  23. 23.
    Zhou, S., Li, Y., Li, J.: GML storage: a spatial database approach. In: Wang, S., Tanaka, K., Zhou, S., Ling, T.-W., Guan, J., Yang, D., Grandi, F., Mangina, E.E., Song, I.-Y., Mayr, H.C. (eds.) ER Workshops 2004. LNCS, vol. 3289, pp. 55–66. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Meier, W.: eXist: an open source native XML database. In: Chaudhri, A.B., Jeckle, M., Rahm, E., Unland, R. (eds.) NODe-WS 2002. LNCS, vol. 2593, pp. 169–183. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Perry, M., Jain, P., Sheth, A.P.: SPARQL-ST: extending SPARQL to support spatiotemporal queries. In: Ashish, N., Sheth, A.P. (eds.) Geospatial Semantics and the Semantic Web, pp. 61–86. Springer, New York (2011)CrossRefGoogle Scholar
  26. 26.
    Ramm, F., Topf, J., Chilton, S.: OpenStreetMap: using and enhancing the free map of the world. UIT Cambridge, Cambridge (2011)Google Scholar
  27. 27.
    Robie, J., Chamberlin, D., Dyck, M., Snelson, J.: XQuery 3.0: An XML query language. W3C (2014)Google Scholar
  28. 28.
    Shekhar, S., Xiong, H.: Java topology suite (JTS). In: Shekhar, S., Xiong, H. (eds.) Encyclopedia of GIS, pp. 601–601. Springer, New York (2008)CrossRefGoogle Scholar
  29. 29.
    Stadler, C., Lehmann, J., Höffner, K., Auer, S.: Linkedgeodata: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jesús M. Almendros-Jiménez
    • 1
    Email author
  • Antonio Becerra-Terón
    • 1
  1. 1.Information Systems GroupUniversity of AlmeríaAlmeríaSpain

Personalised recommendations