Advertisement

Using Linked Open Data in Geographical Information Systems

  • Patricia Carolina Neves Azevedo
  • Vitor Afonso Pinto
  • Guilherme Sousa Bastos
  • Fernando Silva ParreirasEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 582)

Abstract

Linked Open Data is becoming increasingly important for Geographical Information Systems because most of the sources available on the Web are free of charge. In this work, we present an approach for integrating heterogeneous data located in various public organizations. We address the concepts and technologies which allow for visualizing flood information available from linked open data sources using geographical information systems. The proposed approach adds to the decision-making process, specially in the context of minimizing damage caused by floods. This work also contributes to reducing costs to obtain information beyond organization boundaries by using Semantic Web technologies.

Keywords

Linked open data Geographical information system Flood Semantic web 

References

  1. 1.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semant. Web Inf. Syst. 5, 1–22 (2009)Google Scholar
  2. 2.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284, 28–37 (2001)CrossRefGoogle Scholar
  3. 3.
    Willer, M., Dunsire, G.: Bibliographic Information Organization in the Semantic Web. Elsevier, Amsterdam (2013)Google Scholar
  4. 4.
    Feridun, M., Tanner, A.: Using linked data for systems management. In: NOMS, pp. 926–929. IEEE (2010)Google Scholar
  5. 5.
    Mi, J., Chen, H., Lu, B., Yu, T., Pan, G.: Deriving similarity graphs from open linked data on semantic web. In: IRI, pp. 157–162 (2009). IEEE Systems, Man, and Cybernetics SocietyGoogle Scholar
  6. 6.
    Thoma, M., Sperner, K., Braun, T.: Service descriptions and linked data for integrating WSNs into enterprise it. In: SESENA, pp. 43–48. IEEE (2012)Google Scholar
  7. 7.
    Ziegler, J., Graube, M., Urbas, L.: RFID as universal entry point to linked data clouds. In: RFID-TA, pp. 281–286. IEEE (2012)Google Scholar
  8. 8.
    Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane, M., O’Riain, S.: Linking building data in the cloud: integrating cross-domain building data using linked data. Adv. Eng. Inform. 27, 206–219 (2013)CrossRefGoogle Scholar
  9. 9.
    Svensson, G., Hu, B.: A case study of linked enterprise data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 129–144. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Galiotou, E., Fragkou, P.: Applying linked data technologies to greek open government data: a case study. Procedia Soc. Behav. Sci. 73, 479–486 (2013). Proceedings of the 2nd International Conference on Integrated Information (IC-ININFO 2012), Budapest, Hungary, August 30 September 3, 2012CrossRefGoogle Scholar
  11. 11.
    Passant, A., Laublet, P., Breslin, J.G., Decker, S.: Semslates: improving enterprise 2.0 information systems using semantic web technologies. In: CollaborateCom, pp. 1–10. IEEE (2009)Google Scholar
  12. 12.
    Breslin, J.G., O’Sullivan, D., Passant, A., Vasiliu, L.: Semantic web computing in industry. Comput. Ind. 61, 729–741 (2010)CrossRefGoogle Scholar
  13. 13.
    Herman, I.: Tutorial on semantic web technologies. Presentation (2012). http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/
  14. 14.
    Manola, F., Miller, E. (eds.): RDF Primer W3C Recommendation. W3C (2004)Google Scholar
  15. 15.
    PrudHommeaux, E., Seaborne, A., et al.: SPARQL query language for RDF. W3C recommendation (W3C)Google Scholar
  16. 16.
    Kraak, J., Ormeling, F.J.: Cartography: Visualization of Geospatial Data. Prentice Hall, New York (2003)Google Scholar
  17. 17.
    Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: Proceedings of ISWC2004, vol. 2004 (2004)Google Scholar
  18. 18.
    Geroimenko, V., Chen, C.: Visualizing the Semantic Web: XML-Based Internet and Information Visualization. Springer-Verlag GmbH, London (2003)CrossRefGoogle Scholar
  19. 19.
    Card, S.K., MacKinlay, J.D., Schneiderman, B.: Readings in Information Visualization: Using Vision to Think. Interactive Technologies Series. Morgan Kaufmann Publishers Inc., San Francisco (1999)Google Scholar
  20. 20.
    Hyland, S., Haugen, A.S., Thomassen, O.: Perceptions of time spent on safety tasks in surgical operations: a focus group study. Saf. Sci. 70, 70–79 (2014)CrossRefGoogle Scholar
  21. 21.
    Cyganiak, R.: Accessing relational databases as virtual RDF graphs (2012). http://www.d2rq.org. Accessed 01 October 2014
  22. 22.
    Johnson, S.: The Ghost Map: The Story of London’s Most Terrifying Epidemic-and How it Changed Science, Cities, and the Modern World. Riverhead Books, New York (2006)Google Scholar
  23. 23.
    Gür, N., Díaz, L., Kauppinen, T.: GI systems for public health with an ontology based approach. In: AGILE 2012, Avignon, France (2012)Google Scholar
  24. 24.
    Vilches-Blázquez, L.M., Villazón-Terrazas, B., Saquicela, V., de León, A., Corcho, O., Gómez-Pérez, A.: Geolinked data and inspire through an application case. In: SIGSPATIAL 2010, GIS 2010, pp. 446–449. ACM, New York (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Patricia Carolina Neves Azevedo
    • 1
    • 3
  • Vitor Afonso Pinto
    • 3
  • Guilherme Sousa Bastos
    • 2
  • Fernando Silva Parreiras
    • 3
    Email author
  1. 1.CPRM, Companhia de Pesquisa de Recursos MineraisBelo HorizonteBrazil
  2. 2.IESTI, Institute of System Engineering and Information TechnologyUNIFEIItajubáBrazil
  3. 3.LAIS, Laboratory of Advanced Information SystemsFUMEC UniversityBelo HorizonteBrazil

Personalised recommendations