Advertisement

Reasoning Geo-Spatial Neutral Similarity from Seismic Data Using Mixture and State Clustering Models

  • Avi BleiweissEmail author
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 582)

Abstract

Conventionally, earthquake events are recognized by guided and well established geographical region confines. However, explicit regional schemes are prone to overlook patterns manifested by cross-boundary seismic relations that are regarded vital to seismological research. Rather, we investigate a statistically motivated system that clusters earthquake impacted places by similarity in seismic feature space, and is hence impartial to geo-spatial proximity constraints. To facilitate our study, we have acquired hundreds of thousands recordings of earthquake episodes that traverse an extended time period of forty years. Episodes are split into groups singled out by their affiliated geographical place, and from each, we have extracted objective seismic features expressed in both a compact term-frequency of scales format, and as a discrete signal representation that captures magnitude samples spaced in regular time intervals. Attribute vectors of the distributional and temporal domains are further applied towards our mixture model and Markov chain frameworks, respectively, to conduct clustering of presumed unlabeled, shake affected locations. We performed comprehensive cluster analysis and classification experiments, and report robust results that support the intuition of geo-spatial neutral similarity.

Keywords

Earthquake Seismic Mixture model Hidden Markov model Expectation-maximization Clustering k-nearest neighbors 

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their insightful and helpful feedback on our work.

References

  1. 1.
    Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: International Symposium on Information Theory, Budapest, pp. 267-281 (1973)Google Scholar
  2. 2.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press Series/Addison Wesley, Essex (1999)Google Scholar
  3. 3.
    Baum, L.E.: An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. In: Symposium on Inequalities, Los Angeles, pp. 1-8 (1972)Google Scholar
  4. 4.
    Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966)CrossRefMathSciNetzbMATHGoogle Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press/McGraw-Hill Book Company, Cambridge (1990)zbMATHGoogle Scholar
  6. 6.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Duda, R.O., Hart, P.E., Stork, D.G.: Unsupervised learning and clustering. In: Pattern Classification, pp. 517–601. Wiley, New York (2001)Google Scholar
  8. 8.
    Flinn-Engdahl Seismic and Geographic Regionalization Scheme (2000). http://earthquake.usgs.gov/learn/topics/flinn_engdahl.php
  9. 9.
    Fraley, C., Raftery, A.E.: Bayesian regularization for normal mixture estimation and model-based clustering. J. Class. 24(2), 155–181 (2007)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    GeoJSON Format for Encoding Geographic Data Structures (2007). http://geojson.org/
  12. 12.
    Hough, S.E.: Earthquake intensity distribution: a new view. Bull. Earthq. Eng. 12(1), 135–155 (2014)CrossRefGoogle Scholar
  13. 13.
    Johnson, S.C.: Hierarchical clustering schemes. J. Psychom. 32(3), 241–254 (1967)CrossRefGoogle Scholar
  14. 14.
    Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis. Wiley, New York (1990)CrossRefGoogle Scholar
  15. 15.
    Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster tree: the dynamic tree cut library for R. J. Bioinform. 24(5), 719–720 (2007)CrossRefGoogle Scholar
  16. 16.
    Manning, C.D., Raghavan, P., Schutze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (2000)Google Scholar
  18. 18.
    Mclachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)CrossRefzbMATHGoogle Scholar
  19. 19.
    Mclachlan, G.J., Basford, K.E.: Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York (1988)zbMATHGoogle Scholar
  20. 20.
    Ngatchou-Wandji, J., Bulla, J.: On choosing a mixture model for clustering. J. Data Sci. 11(1), 157–179 (2013)MathSciNetGoogle Scholar
  21. 21.
    R Project for Statistical Computing (1997). http://www.r-project.org/
  22. 22.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)CrossRefGoogle Scholar
  23. 23.
    Rajaraman, R., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
  24. 24.
    Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1975)CrossRefzbMATHGoogle Scholar
  25. 25.
    Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)CrossRefzbMATHGoogle Scholar
  26. 26.
    Theodoridis, Y.: SEISMO-SURFER: a prototype for collecting, querying, and mining seismic data. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.) PCI 2001. LNCS, vol. 2563, pp. 159–171. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  27. 27.
    United States Geological Survey (USGS) (2004). http://earthquake.usgs.gov/earthquakes/feed/v1.0/
  28. 28.
    Ward, J.H.: Hierarchical grouping to optimize an objective function. Am. Stat. Assoc. 58(301), 236–244 (1963)CrossRefGoogle Scholar
  29. 29.
    Young, J.B., Presgrave, B.W., Aichele, H., Wiens, D.A., Flinn, E.A.: The Flinn-Engdahl regionalization scheme: the 1995 revision. Phys. Earth Planet. Inter. 96(4), 223–297 (1995)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Platform Engineering GroupIntel CorporationSanta ClaraUSA

Personalised recommendations