Skip to main content

Part of the book series: Springer Series on Epidemiology and Public Health ((SSEH))

  • 1114 Accesses

Abstract

The Hockley Valley Consensus Symposium based most of its conclusions on dose/response relationships between physical activity and disease on subjective questionnaire reports. In this chapter, we summarize the findings from the Hockley Valley meeting, and we examine how far these conclusions have been amplified and/or modified by the use of objective physical activity monitors. Among a wide range of topics, we have included data on objective activity monitoring in relation to all-cause mortality, cardiac death, cardiovascular disease, stroke, peripheral vascular disease, hypertension, cardiac and metabolic risk factors, diabetes mellitus, obesity, low back pain. osteoarthritis, osteoporosis, chronic chest disease, cancer, depression, quality of life and the capacity for independent living. The introduction of objective monitoring has clarified dose/response relationships in a number of areas, allowing us to define relationships in terms of objective metrics (the number of steps taken per day). However, much of the information that is currently available remains cross-sectional in type. In many areas of rehabilitation, the pedometer/accelerometer seems a useful motivating device, providing well-documented increments of weekly activity. However, there remains a need for well-designed longitudinal trials, using objective monitors to follow changes in habitual activity and thus to demonstrate causality in the association between physical activity and good health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kesaniemi YA, Danforth E, Jensen MD, et al. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33(6):S351–8.

    CAS  PubMed  Google Scholar 

  2. Lamonte MJ, Ainsworth BE. Quantifying energy expenditure and physical activity in the context of the dose response. Med Sci Sports Exerc. 2001;33(6 Supp):S370–8.

    Article  CAS  PubMed  Google Scholar 

  3. Oxman AD, Sackett DL, Guyatt GH. User’s guides to the medical literature. 1. How to get started. The evidence-based medical working group. JAMA. 1993;270:2093–5.

    Article  CAS  PubMed  Google Scholar 

  4. Rothman KJ, Greenland S. Modern epidemiology. Philadelphia, PA: Lippincott-Raven; 1998.

    Google Scholar 

  5. Schriger DL. Analyzing the relationship of exercise and health: methods, assumptions and limitations. Med Sci Sports Exerc. 2001;33(6 Suppl):S359–63.

    Article  CAS  PubMed  Google Scholar 

  6. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33(6 Suppl):S364–9.

    Article  CAS  PubMed  Google Scholar 

  7. Shephard RJ. Absolute versus relative intensity of physical activity in a dose-response context. Med Sci Sports Exerc. 2001;33(6 Suppl):S400–18.

    Article  CAS  PubMed  Google Scholar 

  8. Blair SN, Cheng Y, Holder JS. Is physical activity or fitness more important in defining health benefits? Med Sci Sports Exerc. 2001;33(6 Suppl):S379–99.

    Article  CAS  PubMed  Google Scholar 

  9. Lee I-M, Skerrett PJ. Physical activity and all-cause mortality: what is the dose-response relationship? Med Sci Sports Exerc. 2001;33(6 Suppl):S459–71.

    Article  CAS  PubMed  Google Scholar 

  10. Kohl HW. Physical activity and cardiovascular disease: evidence for a dose-response. Med Sci Sports Exerc. 2001;33(6 Suppl):S472–83.

    Article  PubMed  Google Scholar 

  11. Fagard RH. Exercise characteristics and the blood pressure response to dynamic training. Med Sci Sports Exerc. 2001;33(6 Suppl):S484–92.

    Article  CAS  PubMed  Google Scholar 

  12. Kelley DE, Goodpaster BH. Effects of exercise on glucose homeostasis in Type 2 diabetes mellitus. Med Sci Sports Exerc. 2001;33(6 Suppl):S495–501.

    Article  CAS  PubMed  Google Scholar 

  13. Leon AS, Sanchez OA. Response of blood lipids to exercise training alone or combined with dietary intervention. Med Sci Sports Exerc. 2001;33(6 Suppl):S502–15.

    Article  CAS  PubMed  Google Scholar 

  14. Rauraamaa R, Li G, Vaisänen SB. Dose-response and coagulation and hemostatic factors. Med Sci Sports Exerc. 2001;33(6 Suppl):S516–20.

    Article  Google Scholar 

  15. Ross R, Janssen I. Physical activity, total and regional obesity: dose-response considerations. Med Sci Sports Exerc. 2001;33(6 Suppl):S521–7.

    Article  CAS  PubMed  Google Scholar 

  16. Thune I, Furberg A-S. Physical activity and cancer risk: dose response and cancer, all-sites and specific. Med Sci Sports Exerc. 2001;33(6 Suppl):S530–50.

    Article  CAS  PubMed  Google Scholar 

  17. Vuori IM. Dose-response of physical activity and lower back pain, osteoarthritis, and osteoporosis. Med Sci Sports Exerc. 2001;33(6 Suppl):S551–86.

    Article  CAS  PubMed  Google Scholar 

  18. Dunn AL, Treivedi MH, O’Neal HA. Physical activity dose-response effects on outcomes of depression and anxiety. Med Sci Sports Exerc. 2001;33(6 Suppl):S587–97.

    Article  CAS  PubMed  Google Scholar 

  19. Washki B, Kirsten A, Holz O, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011;140(2):331–42.

    Article  Google Scholar 

  20. Matsuzawa R, Matsunaga A, Wang G, et al. Habitual physical activity measured by accelerometer and survival in maintenance hemodialysis patients. Clin J Am Soc Nephrol. 2012;7(12):210–6.

    Article  Google Scholar 

  21. Tranah GJ, Blackwell T, Ancoli-Israel S, et al. Circadian activity rhythms and mortality: the study of osteoporotic fractures. J Am Geriatr Soc. 2010;58(2):282–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kripke DF, Langer RD, Elliott JA, et al. Mortality related to actigraphic long and short sleep. Sleep Med. 2011;12(1):28–33.

    Article  PubMed  Google Scholar 

  23. Ostir GV, Berges IM, Kuo Y-F, et al. Mobility activity and its value as a prognostic indicator of survival in hospitalized older adults. J Am Geriatr Soc. 2013;61(4):551–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Garcia-Rio F, Rojo B, Casitas R, et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD. Chest. 2012;142(2):338–46.

    Article  PubMed  Google Scholar 

  25. Zanoria SJ, ZuWallack R. Directly measured physical activity as a predictor of hospitalizations in patients with chronic obstructive pulmonary disease. Chron Respir Dis. 2013;10(4):207–13.

    Article  PubMed  Google Scholar 

  26. Matsuzawa R, Matsunaga A, Kutsuna T, et al. Association of habitual physical activity measured by an accelerometer with high-density lipoprotein cholesterol levels in maintenance hemodialysis patients. Sci World J. 2013, 780783.

    Google Scholar 

  27. Yates T, Haffner DM, Schulte PJ, et al. Association between change in daily ambulatory activity and cardiovascular events in people with impaired glucose tolerance (NAVIGATOR trial): a cohort analysis. Lancet. 2014;383(9922):1059–66.

    Article  PubMed  Google Scholar 

  28. Aoyagi Y, Park H, Kakiyama T, et al. Yearlong physical activity and regional stiffness of arteries in older adults: the Nakanojo study. Eur J Appl Physiol. 2010;109:455–64.

    Article  PubMed  Google Scholar 

  29. Gando Y, Yamamoto K, Murakami H, et al. Longer time spent in light physical activity is associated with reduced arterial stiffness in older adults. Hypertension. 2010;56:540–6.

    Article  CAS  PubMed  Google Scholar 

  30. Hawkins M, Gabriel KP, Cooper J, et al. The impact of a change in physical activity on change in arterial stiffness in overweight or obese sedentary young adults. Vasc Med. 2014;19(4):257–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hayashi K, Sugawara J, Komine H, et al. Effects of aerobic exercise training on the stiffness of central and peripheral arteries in middle-aged sedentary men. Jpn J Physiol. 2005;55(4):235–9.

    Article  PubMed  Google Scholar 

  32. Matsuda M. Effects of exercise and physical activity on prevention of arteriosclerosis—special reference to arterial distensibility. Int J Sport Health Sci. 2006;4:316–24.

    Article  Google Scholar 

  33. O’Donovan C, Lithander F, Rafteryet T, et al. Inverse relationship between physical activity and arterial stiffness in adults with hypertension. J Phys Act Health. 2014;11(2):272–7.

    Article  PubMed  Google Scholar 

  34. Ried-Larsen M, Grøntved A, Froberg K, et al. Physical activity intensity and subclinical atherosclerosis in Danish adolescents: the European Youth Heart Study. Scand J Med Sci Sports. 2013;23:e168–77.

    Article  CAS  PubMed  Google Scholar 

  35. Sakuragi S, Anbhayaratna K, Gravenmaker KJ, et al. Influence of adiposity and physical activity on arterial stiffness in healthy children. The life of our kids study. Hypertension. 2009;53:611–6.

    Article  CAS  PubMed  Google Scholar 

  36. Sugawara J, Otsuki T, Tanabe T, et al. Physical activity duration, intensity, and arterial stiffening in postmenopausal women. Am J Hypertens. 2006;19(10):1032–6.

    Article  PubMed  Google Scholar 

  37. Tanaka H, Dinenno F, Monahan KD, et al. Aging, habitual exercise and dynamic arterial compliance. Circulation. 2000;102:1270–5.

    Article  CAS  PubMed  Google Scholar 

  38. Boreham CA, Ferreira I, Twisk JW, et al. Cardiorespiratory fitness, physical activity, and arterial stiffness: the Northern Ireland Young Hearts Project. Hypertension. 2004;44(5):721–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kakiyama T, Matsuda M, Koseki S. Effect of physical activity on the distensibility of the aortic wall in healthy males. Angiology. 1998;49(9):749–57.

    Article  CAS  PubMed  Google Scholar 

  40. Yamada S, Inaba M, Goto H, et al. Associations between physical activity, peripheral atherosclerosis and bone status in healthy Japanese women. Atherosclerosis. 2006;188:196–202.

    Article  CAS  PubMed  Google Scholar 

  41. Tanabe T, Maeda S, Sugawara J, et al. Effect of daily physical activity on systemic arterial compliance in middle-aged and elderly humans: special references in amount and intensity of physical activity. Int J Sport Health Sci. 2006;4:489–98.

    Article  Google Scholar 

  42. Aoyagi Y, Shephard RJ. Sex differences in relationships between habitual physical activity and health in the elderly: practical implications for epidemiologists based on pedometer/accelerometer data from the Nakanojo study. Arch Gerontol Geriatr. 2013;56(2):327–38.

    Article  PubMed  Google Scholar 

  43. Gabriel KP, Matthews KA, Pérez A, et al. Self-reported and accelerometer-derived physical activity levels and coronary artery calcification progression in older women: results from the Healthy Women Study. Menopause. 2013;20(2):152–61.

    PubMed  PubMed Central  Google Scholar 

  44. Storti KL, Pettee Gabriel KK, Underwood DA, et al. Physical activity and coronary artery calcification in two cohorts of women representing early and late postmenopause. Menopause. 2010;17(6):1146–51.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hamer M, Venuraju SM, Lahiri A, et al. Objectively assessed physical activity, sedentary time, and coronary artery calcification in healthy older adults. Arterioscler Thromb Vasc Biol. 2012;32:500–5.

    Article  CAS  PubMed  Google Scholar 

  46. Hamer M, Venuraju SM, Urbanova L, et al. Physical activity, sedentary time, and pericardial fat in healthy older adults. Obesity. 2012;20:2113–7.

    Article  PubMed  Google Scholar 

  47. Butler EN, Evenson KR. Prevalence of physical activity and sedentary behavior among stroke survivors in the United States. Top Stroke Rehabil. 2014;21(3):246–55.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee PH, Nan H, Yu Y-Y, et al. For non-exercising people, the number of steps walked is more strongly associated with health than time spent walking. J Sci Med Sport. 2013;16:227–30.

    Article  PubMed  Google Scholar 

  49. Sullivan JE, Espe LE, Kelly AM, et al. Feasibility and outcomes of a community-based, pedometer-monitored walking program in chronic stroke: a pilot study. Top Stroke Rehabil. 2014;21(2):101–10.

    Article  PubMed  Google Scholar 

  50. Carroll SL, Greig CA, Lewis SJ, et al. The use of pedometers in stroke survivors: are they feasible and how well do they detect steps? Arch Phys Med Rehabil. 2012;93(3):466–70.

    Article  PubMed  Google Scholar 

  51. Manns PJ, Haennel RG. SenseWear armband and stroke: validity of energy expenditure and step count measurement during walking. Stroke Res Treat. 2012, 247165.

    Google Scholar 

  52. Kuys SS, Clark C, Morris NR. Portable multisensor activity monitor (SenseWear) lacks accuracy in energy expenditure measurement during treadmill walking following stroke. Int J Neurol Rehabil. 2014;1:101.

    Google Scholar 

  53. Field MJ, Gebruers N, Shanmuga T, et al. Physical activity after stroke: a systematic review. ISRN Stroke. 2013, 464176.

    Google Scholar 

  54. Moore SA, Hallsworth K, Plötz T, et al. Physical activity, sedentary behaviour and metabolic control following stroke: a cross-sectional and longitudinal study. PLoS One. 2013;8(1), e55263. Special section.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mudge S, Stott S. Timed walking tests correlate with daily step activity in persons with stroke. Arch Phys Med Rehabil. 2009;90:296–300.

    Article  PubMed  Google Scholar 

  56. Kono Y, Kawajin H, Kamisaka K, et al. Predictive impact of daily physical activity on new vascular events in patients with mild ischemic stroke. Int J Stroke. 2015;10(2):219–23.

    Article  PubMed  Google Scholar 

  57. Kono Y, Yamada S, Yamaguchi J, et al. Secondary prevention of new vascular events with lifestyle intervention in patients with noncardioembolic mild ischemic stroke: a single-center randomized controlled trial. Cerebrovasc Dis. 2013;36:88–97.

    Article  PubMed  Google Scholar 

  58. McDermott MM, Greenland P, Guralnick J, et al. Inflammatory markers, D-dimer, pro-thrombotic factors, and physical activity levels in patients with peripheral arterial disease. Vasc Med. 2004;9:107–15.

    Article  PubMed  Google Scholar 

  59. Gardner AW, Killewich LA. Association between physical activity and endogenous fibrinolysis in peripheral arterial disease: a cross-sectional study. Angiology. 2002;53(4):367–74.

    Article  PubMed  Google Scholar 

  60. Craft LL, Guralnick J, Ferrucci L, et al. Physical activity during daily life and circulating biomarker levels in patients with peripheral arterial disease. Am J Cardiol. 2008;102(9):1263–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Payvandi L, Dyer A, McPherson D, et al. Physical activity during daily life and brachial artery flow-mediated dilation in peripheral arterial disease. Vasc Med. 2009;14(3):193–201.

    Article  PubMed  PubMed Central  Google Scholar 

  62. McDermott MD, Liu K, Carroll TJ, et al. Superficial femoral artery plaque and functional performance in peripheral arterial disease: walking and leg circulation study (WALCS III). JACC Cardiovasc Imaging. 2011;4(7):730–9.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Trigona B, Aggoun Y, Maggio A, et al. Preclinical noninvasive markers of atherosclerosis in children and adolescents with type 1 diabetes are influenced by physical activity. J Pediatr. 2010;157(4):533–9.

    Article  PubMed  Google Scholar 

  64. Sieminski DJ, Gardner AW. The relationship between free-living daily physical activity and the severity of peripheral arterial occlusive disease. Vasc Med. 1997;2(4):286–91.

    Article  CAS  PubMed  Google Scholar 

  65. McDermott MM, Liu K, O’Brien E, et al. Measuring physical activity in peripheral arterial disease: a comparison of two physical activity questionnaires with an accelerometer. Angiology. 2000;51(2):91–100.

    Article  CAS  PubMed  Google Scholar 

  66. McDermott MM, Guralnick J, Ferrucci L, et al. Physical activity, walking exercise, and calf skeletal muscle characteristics in patients with peripheral arterial disease. J Vasc Surg. 2007;46(1):87–93.

    Article  PubMed  PubMed Central  Google Scholar 

  67. McDermott MD, Greenland F, Ferrucci L, et al. Lower extremity performance is associated with daily life physical activity in individuals with and without peripheral arterial disease. J Am Geriatr Soc. 2002;50(2):247–55.

    Article  PubMed  Google Scholar 

  68. Garg PV, Liu K, McDermott MD. Physical activity during daily life and functional decline in peripheral arterial disease. Circulation. 2009;119(2):251–60.

    Article  PubMed  Google Scholar 

  69. Garg PV, Tian L, Criqui MH, et al. Physical activity during daily life and mortality in patients with peripheral arterial disease. Circulation. 2006;114:242–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chase JA. Systematic review of physical activity intervention studies after cardiac rehabilitation. J Cardiovasc Nurs. 2011;26(5):351–8.

    Article  PubMed  Google Scholar 

  71. Bravata DM, Smith-Spangler C, Vandana G, et al. Using pedometers to increase physical activity and improve health: a systematic review. JAMA. 2007;298(19):2296–304.

    Article  CAS  PubMed  Google Scholar 

  72. Guiraud T, Granger R, Bousquet M, et al. Validity of a questionnaire to assess the physical activity level in coronary artery disease patients. Int J Rehabil Res. 2012;35:270–4.

    PubMed  Google Scholar 

  73. Stevenson TG, Riggin K, Nagelkirk PR, et al. Physical activity habits of cardiac patients participating in an early outpatient rehabilitation program. J Cardiopulm Rehabil Prev. 2009;29(5):299–303.

    Article  PubMed  Google Scholar 

  74. Ayabe M, Brubaker PH, Dobrosieski D, et al. The physical activity patterns of cardiac rehabilitation program participants. J Cardiopulm Rehabil Prev. 2004;24:80–6.

    Article  Google Scholar 

  75. Jones NL, Schneider PL, Kaminski LA, et al. An assessment of the total amount of physical activity of patients participating in a phase III cardiac rehabilitation program. J Cardiopulm Rehabil Prev. 2007;27:81–5.

    Article  PubMed  Google Scholar 

  76. Reid RD, Morrin LI, Higginson LAJ, et al. Motivational counselling for physical activity in patients with coronary artery disease not participating in cardiac rehabilitation. Eur J Prev Cardiol. 2011;19(2):161–6.

    Article  PubMed  Google Scholar 

  77. Oliveira J, Ribeiro F, Gomes H. Effects of a home-based cardiac rehabilitation program on the physical activity levels of patients with coronary artery disease. J Cardiopulm Rehabil Prev. 2008;28:392–6.

    Article  PubMed  Google Scholar 

  78. Karjailainen JJ, Kiviniemi AM, Hautala AJ, et al. Effects of exercise prescription on daily physical activity and maximal exercise capacity in coronary artery disease patients with and without type 2 diabetes. Clin Physiol Funct Imaging. 2012;32(6):445–54.

    Article  Google Scholar 

  79. Brändström Y, Brink E, Grankvist G, et al. Physical activity six months after a myocardial infarction. Int J Nurs Pract. 2009;15:191–7.

    Article  PubMed  Google Scholar 

  80. Clark AM, Munbday C, McLaughlin D, et al. Peer support to promote physical activity after completion of centre-based cardiac rehabilitation: evaluation of access and effects. Eur J Cardiovasc Nurs. 2012;11(4):388–95.

    PubMed  Google Scholar 

  81. Izawa KP, Watanabe S, Omiya K, et al. Effect of the self-monitoring approach on exercise maintenance during cardiac rehabilitation. A randomized, controlled trial. Am J Phys Med Rehabil. 2005;84:313–21.

    Article  PubMed  Google Scholar 

  82. Shephard RJ, Park H, Park S, et al. Objectively measured physical activity and progressive loss of lean tissue in older Japanese adults: longitudinal data from the Nakanojo study. J Am Geriatr Soc. 2013;61(11):1887–93.

    Article  PubMed  Google Scholar 

  83. Hermida RC, Ayala DE, Mojón A, et al. Ambulatory blood pressure thresholds for diagnosis of hypertension in patients with and without type 2 diabetes based on cardiovascular outcomes. Chronobiol Int. 2013;30(1–2):132–44.

    Article  PubMed  Google Scholar 

  84. Hermida RC, Ayala DE, Mojón A, et al. Differences between men and women in ambulatory blood pressure thresholds for diagnosis of hypertension based on cardiovascular outcomes. Chronobiol Int. 2013;30(1–2):221–32.

    Article  PubMed  Google Scholar 

  85. Ayala DE, Hermida RC, Mojón A, et al. Cardiovascular risk of resistant hypertension: dependence on treatment-time regimen of blood pressure-lowering medications. Chronobiol Int. 2013;30(1–2):340–52.

    Article  CAS  PubMed  Google Scholar 

  86. Wuerzner G, Bochud M, Zweiacker C, et al. Step count is associated with lower nighttime systolic blood pressure and increased dipping. Am J Hypertens. 2013;26(4):527–34.

    Article  PubMed  Google Scholar 

  87. Camhi SM, Sisson SB, Johnson WD, et al. Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. Prev Med. 2011;52(5):358–60.

    Article  PubMed  Google Scholar 

  88. Chan CB, Spoangler E, Valcour J, et al. Cross-sectional relationship of pedometer-determined ambulatory activity to indicators of health. Obes Res. 2003;11(12):1563–70.

    Article  PubMed  Google Scholar 

  89. Christensen DL, Alcala-Sanchez I, Leal-Berunen I, et al. Physical activity, cardio-respiratory fitness, and metabolic traits in rural Mexican Tarahumara. Am J Hum Biol. 2012;24(4):558–61.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Healy GN, Wijndaele K, Dunstan DW, et al. Objectively measured sedentary time, physical activity and metabolic risk. Diabetes Care. 2008;31(2):369–71.

    Article  PubMed  Google Scholar 

  91. Huffman KM, Sun J-L, Thomas L, et al. Impact of baseline physical activity and diet behavior on metabolic syndrome in a pharmaceutical trial: results from NAVIGATOR. Metabolism. 2014;63(4):554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leary SD, Ness AR, Smith GD, et al. Physical activity and blood pressure in childhood: findings from a population-based study. Hypertension. 2008;51(1):92–8.

    Article  CAS  PubMed  Google Scholar 

  93. Luke A, Dugas LR, Durazo-Arvizu RA, et al. Assessing physical activity and its relationship to cardiovascular risk factors: NHANES 2003–2006. BMC Public Health. 2011;11:387.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Natali A, Muscelli E, Casolaro A, et al. Metabolic characteristics of prehypertension: role of classification criteria and gender. J Hypertens. 2009;27(12):2394–402.

    Article  CAS  PubMed  Google Scholar 

  95. Ryan JM, Hensey O, McLoughlin B, et al. Reduced moderate-to-vigorous physical activity and increased sedentary behavior are associated with elevated blood pressure values in children with cerebral palsy. Phys Ther. 2014;94(8):1144–53.

    Article  PubMed  Google Scholar 

  96. Lima LG, Moriguti JC, Ferriolli E, et al. Effect of a single session of aerobic walking exercise on arterial pressure in community-living elderly individuals. Hypertens Res. 2012;35:457–62.

    Article  PubMed  Google Scholar 

  97. Gemson DH, Commisso R, Fuente J, et al. Promoting weight loss and blood pressure control at work: impact of an education and intervention program. J Occup Environ Med. 2008;50(3):272–81.

    Article  PubMed  Google Scholar 

  98. Moreau KL, Degarmo R, Langley J, et al. Increasing daily walking lowers blood pressure in postmenopausal women. Med Sci Sports Exerc. 2001;33(11):1825–31.

    Article  CAS  PubMed  Google Scholar 

  99. Iwane M, Arita M, Tomimoto S, et al. Walking 10,000 steps/day or more reduces blood pressure and sympathetic nerve activity in mild essential hypertension. Hypertens Res. 2000;23(6):573–80.

    Article  CAS  PubMed  Google Scholar 

  100. Zoellner J, Connell C, Madson MB, et al. HUB city steps: a 6-month lifestyle intervention improves blood pressure among a primarily African-American community. J Acad Nutr Diet. 2014;114:4603–12.

    Article  Google Scholar 

  101. Hultquist CN, Albright C, Thompson DL, et al. Comparison of walking recommendations in previously sedentary women. Med Sci Sports Exerc. 2005;37(45):676–83.

    Article  PubMed  Google Scholar 

  102. Swartz AM, Strath DJ, Bassett DR, et al. Increasing daily walking improves glucose tolerance in overweight women. Prev Med. 2003;37(4):356–62.

    Article  CAS  PubMed  Google Scholar 

  103. Park S, Park H, Togo F, et al. Year-long physical activity and metabolic syndrome in older Japanese adults: cross-sectional data from the Nakanojo study. J Gerontol A Biol Sci Med Sci. 2008;63(10):1119–23.

    Article  PubMed  Google Scholar 

  104. Scheers T, Philippaerts R, Lefevre J. SenseWear determined physical activity and sedentary behavior and metabolic syndrome. Med Sci Sports Exerc. 2013;45(3):481–9.

    Article  PubMed  Google Scholar 

  105. Henson J, Yates T, Biddle SJH, et al. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56(5):1012–20.

    Article  CAS  PubMed  Google Scholar 

  106. Bankoski A, Harris TB, McClain JJ, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ekelund U, Griffin SJ, Wareham NJ. Physical activity and metabolic risk in individuals with a family history of type 2 diabetes. Diabetes Care. 2007;30(2):337–42.

    Article  PubMed  Google Scholar 

  108. Alhassan S, Robinson TN. Defining accelerometer thresholds for physical activity in girls using ROC analysis. J Phys Act Health. 2010;71(1):45–53.

    Google Scholar 

  109. Schofield G, Schofield L, Hinckson EA, et al. Daily step counts and selected coronary heart disease risk factors in adolescent girls. J Sci Med Sport. 2009;12:148–55.

    Article  PubMed  Google Scholar 

  110. Morrell CS, Cook SB, Carey GB. Cardiovascular fitness, activity, and metabolic syndrome among college men and women. Metab Syndr Relat Disord. 2013;11(5):370–6.

    Article  PubMed  Google Scholar 

  111. Petrov M, Kim Y, Lauderdale D, et al. Longitudinal associations between objective sleep and lipids: the CARDIA study. Sleep. 2013;36(11):1587–95.

    PubMed  PubMed Central  Google Scholar 

  112. Johansson A, Svanborg E, Edéll-Gustafsson U. Sleep-wake activity rhythm and health-related quality of life among patients with coronary artery disease and in a population-based sample—an actigraphy and questionnaire study. Int J Nurs Pract. 2013;19(4):390–401.

    Article  PubMed  Google Scholar 

  113. Yngman-Uhlin P, Johansson A, Fernström A, et al. Fragmented sleep: an unrevealed problem in peritoneal dialysis patients. Scand J Urol Nephrol. 2011;45(3):206–15.

    Article  PubMed  Google Scholar 

  114. Freak-Poli R, Wolfe R, Backholer K, et al. Impact of a pedometer-based workplace health program on cardiovascular and diabetes risk profile. Prev Med. 2011;53:162–71.

    Article  PubMed  Google Scholar 

  115. Talbot LA, Metter EJ, Morrell CH, et al. A pedometer-based intervention to improve physical activity, fitness and coronary heart disease risk factors in National Guard personnel. Mil Med. 2011;176(5):592–600.

    Article  PubMed  Google Scholar 

  116. Tully MA, Cupples ME, Chan WS, et al. Brisk walking, fitness, and cardiovascular risk: a randomized controlled trial in primary care. Prev Med. 2005;41:622–8.

    Article  CAS  PubMed  Google Scholar 

  117. Simmons RK, Griffin SJ, Steele R, et al. Increasing overall physical activity and aerobic fitness is associated with improvements in metabolic risk: cohort analysis of the ProActive trial. Diabetologia. 2008;51(5):787–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Richardson CR, Buis LR, Janney AW, et al. An online community improves adherence in an internet-mediated walking program. Part 1: results of a randomized controlled trial. J Med Internet Res. 2010;12(4), e71.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Glynn LG, Hayes PS, Casey M, et al. SMART MOVE—a smartphone-based intervention to promote physical activity in primary care: study protocol for a randomized controlled trial. Trials. 2013;14:157.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bäck C, Cider A, Gillström J, et al. Physical activity in relation to cardiac risk markers in secondary prevention of coronary artery disease. Int J Cardiol. 2013;168(1):478–83.

    Article  PubMed  Google Scholar 

  121. Balkau B, Mhamdi L, Oppert J-M, et al. Physical activity and insulin sensitivity: the RISC study. Diabetes. 2008;57(10):2613–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gando Y, Murakami H, Kawakami R, et al. Light-intensity physical activity is associated with insulin resistance in elderly Japanese women independent of moderate- to vigorous-intensity physical activity. J Phys Act Health. 2014;11(2):266–71.

    Article  PubMed  Google Scholar 

  123. Ekelund U, Brage S, Griffin SJ, et al. Objectively measured moderate- and vigorous-intensity physical activity but not sedentary time predicts insulin resistance in high-risk individuals. Diabetes Care. 2009;32(6):1081–6.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lecheminant JD, Tucker LA. Recommended levels of physical activity and insulin resistance in middle-aged women. Diabetes Educ. 2011;37(4):573–80.

    Article  PubMed  Google Scholar 

  125. Telford RD, Cunningham RB, Shaw JE, et al. Contrasting longitudinal and cross-sectional relationships between insulin resistance and percentage of body fat, fitness, and physical activity in children-the LOOK study. Pediatr Diabetes. 2009;10(8):500–7.

    Article  CAS  PubMed  Google Scholar 

  126. Thomas AS, Greene LF, Ard JD, et al. Physical activity may facilitate diabetes prevention in adolescents. Diabetes Care. 2009;32(1):9–13.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Kriska A, Delahanty L, Edelstein S, et al. Sedentary behavior and physical activity in youth with recent onset of type 2 diabetes. Pediatrics. 2013;131(3):e850–6.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Shephard RJ, Johnson N. Effects of physical activity upon the liver. Eur J Appl Physiol. 2015;115(1):1–46.

    Article  CAS  PubMed  Google Scholar 

  129. Gastaldelli A, Kozakova M, HØjlund K, et al. Fatty liver is associated with insulin resistance, risk of coronary heart disease, and early atherosclerosis in a large European population. Hepatology. 2009;49(5):1537–44.

    Article  CAS  PubMed  Google Scholar 

  130. Tudor-Locke CE, Myers A, Bell RC, et al. Preliminary outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type 2 diabetes. Patient Educ Couns. 2002;47(1):23–8.

    Article  PubMed  Google Scholar 

  131. Tudor-Locke C, Bell RC, Myers RC, et al. Controlled outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type II diabetes. Int J Obes Relat Metab Disord. 2004;28(1):113–9.

    Article  CAS  PubMed  Google Scholar 

  132. Furber S, Monger C, Franco L, et al. The effectiveness of a brief intervention using a pedometer and step-recording diary in promoting physical activity in people diagnosed with type 2 diabetes or impaired glucose tolerance. Health Promot J Austr. 2008;19(3):189–95.

    PubMed  Google Scholar 

  133. Engel L, Lindner H. Impact of using a pedometer on time spent walking in older adults with type 2 diabetes. Diabetes Educ. 2006;32(1):98–107.

    Article  PubMed  Google Scholar 

  134. Kirk AF, Higgins LA, Hughes AR, et al. A randomized controlled trial to study the effect of exercise consultation on the promotion of physical activity in people with Type 2 diabetes: a pilot study. Diabet Med. 2001;18:877–82.

    Article  CAS  PubMed  Google Scholar 

  135. Bjorgaas M, Viuk KT, Saeterhaug A, et al. Relationship between pedometer-registered activity, aerobic capacity and self-reported activity and fitness in patients with type 2 diabetes. Diabetes Obes Metab. 2005;7(6):737–44.

    Article  CAS  PubMed  Google Scholar 

  136. Korkiangas EE, Alahuta MA, Husman PM, et al. Pedometer use among adults at high risk of type 2 diabetes, Finland, 2007–2008. Prev Chronic Dis. 2010;7(2):A37.

    Google Scholar 

  137. Gorely T, Bull F, Khunti K. Effectiveness of a pragmatic education program designed to promote walking activity in individuals with impaired glucose tolerance: a randomized controlled trial. Diabetes Care. 2009;32(8):1404–10.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Andersen E, Hoastmark AT, Holme I. Intervention effects on physical activity and insulin levels in men of Pakistani origin living in Oslo: a randomised controlled trial. J Immigr Minor Health. 2013;15(1):101–10.

    Article  PubMed  Google Scholar 

  139. Sone H, Katagiri A, Ishibashi S, et al. Effects of lifestyle modifications on patients with type 2 diabetes: the Japan Diabetes Complications Study (JDCS) study design, baseline analysis and three year-interim report. Horm Metab Res. 2002;34(9):509–15.

    Article  CAS  PubMed  Google Scholar 

  140. Yates T, Davies MJ, Sehmi S, et al. The pre-diabetes risk education and physical activity recommendation and encouragement (PREPARE) programme study: are improvements in glucose regulation sustained at 2 years? Diabet Med. 2011;28(10):1268–71.

    Article  CAS  PubMed  Google Scholar 

  141. Jennersjö P, Ludvigsson J, Länne T, et al. Pedometer-determined physical activity is linked to low systemic inflammation and low arterial stiffness in type 2 diabetes. Diabet Med. 2012;29(9):1119–25.

    Article  PubMed  CAS  Google Scholar 

  142. van Sloten TT, Savelberg HHCM, Duimet-Peeters IG, et al. Peripheral neuropathy, decreased muscle strength and obesity are strongly associated with walking in persons with type 2 diabetes without manifest mobility limitations. Diabetes Res Clin Pract. 2011;91(1):32–9.

    Article  PubMed  Google Scholar 

  143. Tuttle LJ, Sinacore DR, Cade DR, et al. Lower physical activity is associated with higher intermuscular adipose tissue in people with type 2 diabetes and peripheral neuropathy. Phys Ther. 2011;91(6):923–30.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Wedderkopp N, Kjaer P, Hestbaek L, et al. High-level physical activity in childhood seems to protect against low back pain in early adolescence. Spine J. 2009;9(2):134–41.

    Article  CAS  PubMed  Google Scholar 

  145. Wedderkopp N, Leboeuf-Yde C, Andersen B, et al. Back pain in children: no association with objectively measured levels of physical activity. Spine. 2003;28(17):2019–24.

    Article  PubMed  Google Scholar 

  146. Yamakawa K, Tsai CK, Haig AJ, et al. Relationship between ambulation and obesity in older persons with and without low back pain. Int J Obes Relat Metab Disord. 2004;28(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  147. van Weering MGH, Vollenbroek-Hutten MMR, Tonis TM, et al. Daily physical activities in chronic lower back pain patients assessed with accelerometry. Eur J Pain. 2009;13(6):649–54.

    Article  PubMed  Google Scholar 

  148. Verbunt JA, Westerterp KR, VanderHeijden GJ, et al. Physical activity in daily life in patients with chronic low back pain. Arch Phys Med Rehabil. 2001;82(6):726–30.

    Article  CAS  PubMed  Google Scholar 

  149. Hasenbring MI, Plaas H, Fischbein B, et al. The relationship between activity and pain in patients 6 months after lumbar disc surgery: do pain-related coping modes act as moderator variables? Eur J Pain. 2006;10(8):701–9.

    Article  PubMed  Google Scholar 

  150. Dunlop DD, Song J, Semanik PA, et al. Relation of physical activity time to incident disability in community dwelling adults with or at risk of knee arthritis: prospective cohort study. BMJ. 2014;348, g2472.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Sun K, Song J, Lee J, et al. Relationship of meeting physical activity guidelines with health-related utility. Arthritis Care Res. 2014;66(7):1041–7.

    Article  Google Scholar 

  152. Holsgaard-Larsen A, Roos EM. Objectively measured physical activity in patients with end stage knee or hip osteoarthritis. Eur J Phys Rehabil Med. 2012;48(4):577–85.

    CAS  PubMed  Google Scholar 

  153. Ng NTM, Heesch KC, Brown WJ. Efficacy of a progressive walking program and glucosamine sulphate supplementation on osteoarthritic symptoms of the hip and knee: a feasibility trial. Arthritis Res Ther. 2010;12(1):R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Feinglass J, Song J, Semanik P, et al. Association of functional status with changes in physical activity: insights from a behavioral intervention for participants with arthritis. Arch Phys Med Rehabil. 2012;93(1):172–5.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Dore DA, Winzenberg TM, Ding C, et al. The association between objectively measured physical activity and knee structural change using MRI. Ann Rheum Dis. 2013;72(7):1170–5.

    Article  PubMed  Google Scholar 

  156. Svege I, Kolle E, Risberg MA. Reliability and validity of the Physical Activity Scale for the Elderly (PASE) in patients with hip osteoarthritis. BMC Musculoskelet Disord. 2012;13:26.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Winter CC, Brandes M, Muller C, et al. Walking ability during daily life in patients with osteoarthritis of the knee or the hip and lumbar spinal stenosis: a cross sectional study. BMC Musculoskelet Disord. 2010;11:233.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Murphy SL, Smith DM, Lyden AK. Type of activity pacing instruction affects physical activity variability in adults with symptomatic knee or hip osteoarthritis. J Phys Act Health. 2012;9(3):360–6.

    PubMed  Google Scholar 

  159. Murphy SL, Lyden A, Smith DM, et al. Effects of a tailored activity pacing intervention on pain and fatigue for adults with osteoarthritis. Am J Occup Ther. 2010;64(6):869–76.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Farr JN, Going SB, McKnight PE, et al. Progressive resistance training improves overall physical activity levels in patients with early osteoarthritis of the knee: a randomized controlled trial. Phys Ther. 2010;90(3):356–66.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Shephard RJ, Park H, Park S et al. Objectively measured physical activity and calcaneal bone health in older Japanese adults: dose/response relationships in longitudinal data from the Nakanojo study. Calc Tissue Internat. 2014 (in press).

    Google Scholar 

  162. Park H, Togo F, Watanabe E, et al. Relationship of bone health to yearlong physical activity in older Japanese adults: cross-sectional data from the Nakanojo study. Osteporos Int. 2007;18(3):285–93.

    Article  CAS  Google Scholar 

  163. Alwis G, Linden C, Dencker M, et al. Bone mineral accrual and gain in skeletal width in pre-pubertal school children is independent of the mode of school transportation—one-year data from the prospective observational pediatric osteoporosis prevention (POP) study. BMC Musculoskelet Disord. 2007;8:66.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Hoch AZ, Papanek P, Szabo A, et al. Association between the female athlete triad and endothelial dysfunction in dancers. Clin J Sport Med. 2011;21(2):119–25.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Niu K, Ahola R, Guo H, et al. Effect of office-based brief high-impact exercise on bone mineral density in healthy premenopausal women: the Sendai Bone Health Concept Study. J Bone Miner Metab. 2010;28(5):568–77.

    Article  PubMed  Google Scholar 

  166. Jones NL, Killian KJ. Exercise in chronic airway obstruction. In: Bouchard C, Shephard RJ, Stephens T, et al., editors. Exercise, fitness and health. Champaign, IL: Human Kinetics; 1990. p. 547–60.

    Google Scholar 

  167. Whipp BJ, Casaburi R. Physical activity, fitness and chronic lung disease. In: Bouchard C, Shephard RJ, Stephens T, editors. Physical activity, fitness and health. Champaign, IL: Human Kinetics; 1994. p. 749–61.

    Google Scholar 

  168. Walker PP, Burnett A, Flavahan PW, et al. Lower limb activity and its determinants in COPD. Thorax. 2008;63(8):683–9.

    Article  CAS  PubMed  Google Scholar 

  169. Pitta F, Troosters MA, Spruit VS, et al. Characteristics of physical activity in daily life in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;171:972–7.

    Article  PubMed  Google Scholar 

  170. Watz H, Washki B, Meyer T, et al. Physical activity in patients with COPD. Eur Respir J. 2009;33:262–72.

    Article  CAS  PubMed  Google Scholar 

  171. Moy ML, Danilack VA, Garshick E. Daily step counts in a US cohort with COPD. Respir Med. 2012;106(7):962–9.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Garcia-Rio F, Lores V, Mediano O, et al. Daily physical activity in patients with chronic obstructive pulmonary disease is mainly associated with dynamic hyperinflation. Am J Respir Crit Care Med. 2009;180:506–12.

    Article  PubMed  Google Scholar 

  173. Moy ML, Teylan M, Weston NA, et al. Daily step count is associated with plasma C-reactive protein and IL-6 in a US Cohort with COPD. Chest. 2014;145(3):542–50.

    Article  CAS  PubMed  Google Scholar 

  174. Moy ML, Matthess K, Stolzman K, et al. Free-living physical activity in COPD: assessment with accelerometer and activity checklist. J Rehabil Res Dev. 2009;46(2):277–86.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Garcia-Rio F, Rojo B, Casitas R, et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD. Chest. 2014;142(2):338–46.

    Article  Google Scholar 

  176. Orsey AD, Wakefield DB, Cloutier MM. Physical activity (PA) and sleep among children and adolescents with cancer. Pediatr Blood Cancer. 2013;60(11):1908–13.

    Article  PubMed  Google Scholar 

  177. Rabinovich RA, Louvaris Z, Raste Y, et al. Validity of physical activity monitors during daily life in patients with COPD. Eur Respir J. 2013;42(5):1205–15.

    Article  PubMed  Google Scholar 

  178. Moy ML, Weston NA, Wilson EJ, et al. A pilot study of an Internet walking program and pedometer in COPD. Respir Med. 2012;106:1342–50.

    Article  PubMed  Google Scholar 

  179. DePew ZS, Novotny PJ, Benzo RP. How many steps are enough to avoid severe physical inactivity in patients with chronic obstructive pulmonary disease? Respirology. 2012;17:1026–7.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Katz ML, Ferketich AK, Broder-Aldach B, et al. Physical activity among Amish and non-Amish adults living in Ohio Appalachia. J Community Health. 2012;37(2):434–40.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Dallal CM, Brinton LA, Matthews CE, et al. Accelerometer-based measures of active and sedentary behavior in relation to breast cancer risk. Breast Cancer Res Treat. 2012;134(3):1279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  182. Lynch BM, Friedenreich CM, Winkler EAH, et al. Associations of objectively assessed physical activity and sedentary time with biomarkers of breast cancer risk in postmenopausal women: findings from NHANES (2003–2006). Breast Cancer Res Treat. 2011;130(1):183–94.

    Article  PubMed  Google Scholar 

  183. Loprinzi PD, Kohli M. Effect of physical activity and sedentary behavior on serum prostate-specific antigen concentrations: results from the National Health and Nutrition Examination Survey (NHANES), 2003–2006. Mayo Clin Proc. 2013;88(1):11–21.

    Article  CAS  PubMed  Google Scholar 

  184. Loprinzi PD, Lee H. Rationale for promoting physical activity among cancer survivors: literature review and epidemiologic examination. Oncol Nurs Forum. 2014;41(2):117–25.

    Article  PubMed  Google Scholar 

  185. Aznar S, Webster AL, SanJuan AF, et al. Physical activity during treatment in children with leukemia: a pilot study. Appl Physiol Nutr Metab. 2006;31(4):407–13.

    Article  PubMed  Google Scholar 

  186. Tillmann V, Darlington ASE, Elser C, et al. Male sex and low physical activity are associated with reduced spine bone mineral density in survivors of childhood acute lymphoblastic leukemia. J Bone Miner Res. 2002;17(6):1073–80.

    Article  CAS  PubMed  Google Scholar 

  187. Tan SY, Poh BK, Chong HX, et al. Physical activity of pediatric patients with acute leukemia undergoing induction or consolidation chemotherapy. Leuk Res. 2013;37(1):14–20.

    Article  PubMed  Google Scholar 

  188. Vermaete N, Wolter P, Verhoef G, et al. Physical activity and physical fitness in lymphoma patients before, during, and after chemotherapy: a prospective longitudinal study. Ann Hematol. 2014;93(3):411–24.

    Article  PubMed  Google Scholar 

  189. Lynch BM, Dunstan DW, Winkler E, et al. Objectively assessed physical activity, sedentary time and waist circumference among prostate cancer survivors: findings from the National Health and Nutrition Examination Survey (2003–2006). Eur J Cancer Care. 2011;20(4):514–9.

    Article  CAS  Google Scholar 

  190. Granger CL, McDonald CF, Irving L, et al. Low physical activity levels and functional decline in individuals with lung cancer. Lung Cancer. 2014;83(2):292–9.

    Article  PubMed  Google Scholar 

  191. Lynch BM, Dunstan DW, Healy GN, et al. Objectively measured physical activity and sedentary time of breast cancer survivors, and associations with adiposity: findings from NHANES (2003–2006). Cancer Causes Control. 2010;21(2):283–8.

    Article  PubMed  Google Scholar 

  192. Loprinzi PD, Lee H, Cardinal BJ. Objectively measured physical activity among US cancer survivors: considerations by weight status. J Cancer Surviv. 2013;7(3):493–9.

    Article  PubMed  Google Scholar 

  193. Broderick JM, Hussey J, Kennedy MJ, et al. Testing the ‘teachable moment’ premise: does physical activity increase in the early survivorship phase? Support Care Cancer. 2014;22(4):989–97.

    Article  CAS  PubMed  Google Scholar 

  194. Ruiz-Casado A, Verdugo A, Soria S, et al. Objectively assessed physical activity levels in Spanish cancer survivors. Oncol Nurs Forum. 2014;41(1):E12–20.

    Article  PubMed  Google Scholar 

  195. Heath JA, Ramzy JM, Donath SM. Physical activity in survivors of childhood acute lymphoblastic leukaemia. J Paediatr Child Health. 2010;46(4):149–53.

    Article  PubMed  Google Scholar 

  196. Maddocks M, Byrne A, Johnson CD, et al. Physical activity level as an outcome measure for use in cancer cachexia trials: a feasibility study. Support Care Cancer. 2010;18(12):1539–44.

    Article  PubMed  Google Scholar 

  197. Ferriolli E, Skipworth RJE, Hendry P, et al. Physical activity monitoring: a responsive and meaningful patient-centered outcome for surgery, chemotherapy, or radiotherapy? J Pain Symptom Manage. 2012;43(6):1025–35.

    Article  PubMed  Google Scholar 

  198. Inoue Y, Kimura T, Noro H, et al. Is laparoscopic colorectal surgery less invasive than classical open surgery? Quantitation of physical activity using an accelerometer to assess postoperative convalescence. Surg Endosc. 2003;17(8):1269–73.

    Article  CAS  PubMed  Google Scholar 

  199. Takiguchi S, Fujiwara Y, Yamasaki M, et al. Laparoscopy-assisted distal gastrectomy versus open distal gastrectomy. A prospective randomized single-blind study. World J Surg. 2013;37(10):2379–86.

    Article  PubMed  Google Scholar 

  200. Novoa N, Varela G, Jimenz MF, et al. Influence of major pulmonary resection on postoperative daily ambulatory activity of the patients. Interact Cardiovasc Thorac Surg. 2009;9(6):934–8.

    Article  PubMed  Google Scholar 

  201. Knols TH, deBruin ED, Aufdemkampe G, et al. Reliability of ambulatory walking activity in patients with hematologic malignancies. Arch Phys Med Rehabil. 2009;90(1):58–65.

    Article  PubMed  Google Scholar 

  202. Tonosaki A, Ishikawa M. Physical activity intensity and health status perception of breast cancer patients undergoing adjuvant chemotherapy. Eur J Oncol Nurs. 2014;18(2):132–9.

    Article  PubMed  Google Scholar 

  203. Vallance JKH, Courneya KS, Plotnikoff RC, et al. Analyzing theoretical mechanisms of physical activity behavior change in breast cancer survivors: results from the activity promotion (ACTION) trial. Ann Behav Med. 2008;35(2):150–8.

    Article  PubMed  Google Scholar 

  204. Rogers LQ, Shah P, Dunnington G, et al. Social cognitive theory and physical activity during breast cancer treatment. Oncol Nurs Forum. 2005;32(4):807–15.

    Article  PubMed  Google Scholar 

  205. Phillips SM, McAuley E. Social cognitive influences on physical activity participation in long-term breast cancer survivors. Psychooncology. 2013;22(4):783–91.

    Article  PubMed  Google Scholar 

  206. Vallance JKH, Courneya KS, Plotnikoff RC, et al. Randomized controlled trial of the effects of print materials and step pedometers on physical activity and quality of life in breast cancer survivors. J Clin Oncol. 2007;25(27):2352–9.

    Article  PubMed  Google Scholar 

  207. Vallance JKH, Courneya KS, Plotnikoff RC, et al. Maintenance of physical activity in breast cancer survivors after a randomized trial. Med Sci Sports Exerc. 2008;40(1):173–80.

    Article  PubMed  Google Scholar 

  208. Rogers LQ, Hopkins-Price V, Sandy M, et al. Physical activity and health outcomes three months after completing a physical activity behavior change intervention: persistent and delayed effects. Cancer Epidemiol Biomarkers Prev. 2009;18(5):1410–8.

    Article  PubMed  Google Scholar 

  209. Irwin ML, Cadmus L, Alvarez-Reeves M, et al. Recruiting and retaining breast cancer survivors into a randomized controlled exercise trial: the Yale Exercise and Survivorship Study. Cancer. 2008;112(11 Suppl):2593–606.

    Article  PubMed  Google Scholar 

  210. Matthews CE, Willcox S, Hanby CL, et al. Evaluation of a 12-week home-based walking intervention for breast cancer survivors. Support Care Cancer. 2007;15(2):203–11.

    Article  PubMed  Google Scholar 

  211. Nikander R, Sievanen H, Ojala K, et al. Effect of a vigorous aerobic regimen on physical performance in breast cancer patients—a randomized controlled pilot trial. Acta Oncol. 2007;46(2):181–6.

    Article  PubMed  Google Scholar 

  212. Frensham LJ, Zarnowiecki DM, Parfitt G, et al. The experiences of participants in an innovative online resource designed to increase regular walking among rural cancer survivors: a qualitative pilot feasibility study. Support Care Cancer. 2014;22(7):1923–9.

    Article  PubMed  Google Scholar 

  213. Blaaubroek R, Bourna MJ, Tuinier W, et al. The effect of exercise counselling with feedback from a pedometer on fatigue in adult survivors of childhood cancer: a pilot study. Support Care Cancer. 2009;17(8):1041–8.

    Article  Google Scholar 

  214. Burton C, McKinstry B, Szentagotal T, et al. Activity monitoring in patients with depression: a systematic review. J Affect Disord. 2013;145(1):21–8.

    Article  PubMed  Google Scholar 

  215. Vallance JKH, Eurich D, Lavallee C, et al. Daily pedometer steps among older men: associations with health-related quality of life and psychosocial health. Am J Health Promot. 2013;27(5):294–8.

    Article  PubMed  Google Scholar 

  216. Drieling RI, Goldman R, Lisa M, et al. Community resource utilization, psychosocial health, and sociodemographic factors associated with diet and physical activity among low-income obese Latino immigrants. J Acad Nutr Diet. 2014;114(2):257–65.

    Article  PubMed  Google Scholar 

  217. Aronen ET, Simola P, Soininen M. Motor activity in depressed children. J Affect Disord. 2011;133(1–2):188–96.

    Article  PubMed  Google Scholar 

  218. McKercher C, Patton GC, Schmidt MD, et al. Physical activity and depression symptom profiles in young men and women with major depression. Psychosom Med. 2013;75(4):366–74.

    Article  PubMed  Google Scholar 

  219. Yoshiuchi K, Nakabara R, Kumano H, et al. Yearlong physical activity and depressive symptoms in older Japanese adults: cross-sectional data from the Nakanojo study. Am J Geriatr Psychiatry. 2006;14(7):621–4.

    Article  PubMed  Google Scholar 

  220. Loprinzi PD. Objectively measured light and moderate-to-vigorous physical activity is associated with lower depression levels among older US adults. Aging Ment Health. 2014;17(7):801–5.

    Article  Google Scholar 

  221. Song MR, Lee Y-S, Baek J-D, et al. Physical activity status in adults with depression in the National Health and Nutrition Examination Survey, 2005–2006. Public Health Nurs. 2012;29(3):298–317.

    Article  Google Scholar 

  222. Vallance JKH, Winkler E, Gardiner PA, et al. Associations of objectively-assessed physical activity and sedentary time with depression: NHANES (2005–2006). Prev Med. 2011;53(4–5):284–8.

    Article  PubMed  Google Scholar 

  223. McKercher C, Schmidt MD, Sanderson KA, et al. Physical activity and depression in young adults. Am J Prev Med. 2009;36(2):161–4.

    Article  PubMed  Google Scholar 

  224. Ewald B, Attia J, McElduff P. How many steps are enough? Dose-response curves for pedometer steps and multiple health markers in a community-based sample of older Australians. J Phys Act Health. 2014;11(3):509–18.

    Article  PubMed  Google Scholar 

  225. Patel A, Keogh JW, Kolt GS, et al. The long-term effects of a primary care physical activity intervention on mental health in low-active, community-dwelling older adults. Aging Ment Health. 2013;17(6):766–72.

    Article  PubMed  Google Scholar 

  226. Prohaska TR, Wang P-P, Sarkisian CA. The longitudinal relationship between depression and walking behavior in older Latinos: the “Caminemos!” study. J Aging Health. 2013;25(2):319–41.

    Article  PubMed  Google Scholar 

  227. Loprinzi PD, Fitzgerald EM, Cardinal BJ. Physical activity and depression symptoms among pregnant women from the National Health and Nutrition Examination Survey 2005–2006. J Obstet Gynecol Neonatal Nurs. 2012;41(2):227–35.

    Article  PubMed  Google Scholar 

  228. Alosco ML, Spitznagel MB, Miller L, et al. Depression is associated with reduced physical activity in persons with heart failure. Health Psychol. 2012;31(6):754–82.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Horne D, Kehler DD, Kaoukis G, et al. Impact of physical activity on depression after cardiac surgery. Can J Cardiol. 2013;29(12):1649–56.

    Article  PubMed  Google Scholar 

  230. Skotzko CE, Krichtern C, Zietowski G, et al. Depression is common and precludes accurate assessment of functional status in elderly patients with congestive heart failure. J Card Fail. 2000;6(4):300–5.

    Article  CAS  PubMed  Google Scholar 

  231. Piette JD, Richardson C, Himle J, et al. A randomized trial of telephonic counseling plus walking for depressed diabetes patients. Med Care. 2011;49(7):641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Weinstock RS, Brooks G, Palmas W, et al. Lessened decline in physical activity and impairment of older adults with diabetes with telemedicine and pedometer use: results from the IDEATel study. Age Ageing. 2011;40(1):98–105.

    Article  PubMed  Google Scholar 

  233. White DK, Keysor JJ, Neogi T, et al. When it hurts, a positive attitude may help: association of positive affect with daily walking in knee osteoarthritis. Results from a multicenter longitudinal cohort study. Arthritis Care Res. 2012;64(9):1312–9.

    Article  Google Scholar 

  234. Sabiston CM, Brunet J, Burke S. Pain, movement, and mind: does physical activity mediate the relationship between pain and mental health among survivors of breast cancer? Clin J Pain. 2012;28(6):489–95.

    Article  PubMed  Google Scholar 

  235. Suh Y, Moti RW, Mohr DC. Physical activity, disability, and mood in the early stage of multiple sclerosis. Disabil Health J. 2010;3(2):93–8.

    Article  PubMed  Google Scholar 

  236. Moti RW, McAuley E. Pathways between physical activity and quality of life in adults with multiple sclerosis. Health Psychol. 2009;28(6):682–9.

    Article  Google Scholar 

  237. McLoughlin MJ, Colbert LH, Stegner AJ, et al. Are women with fibromyalgia less physically active than healthy women? Med Sci Sports Exerc. 2011;43(5):905–12.

    Article  PubMed  PubMed Central  Google Scholar 

  238. Wichniak A, Skowerska A, Chojnacka-Wojtowicz J, et al. Actigraphic monitoring of activity and rest in schizophrenic patients treated with olanzapine or risperidone. J Psychiatr Res. 2011;45(10):1381–6.

    Article  PubMed  Google Scholar 

  239. Yasunaga A, Togo F, Watanabe E, et al. Yearlong physical activity and health-related quality of life in older Japanese adults: the Nakanojo study. J Aging Phys Act. 2006;14:288–301.

    PubMed  Google Scholar 

  240. Yasunaga A, Togo F, Park H et al. (2008) Interactive effects of the intensity and volume of habitual physical activity on health-related quality of life: the Nakanojo study. Human Kinetics: Champaign, IL (AACC Archived articles)

    Google Scholar 

  241. Yoshiuchi K, Inada S, Nakahara R, et al. Stressful life events and habitual physical activity in older adults: 1-year accelerometry data from the Nakanonjo study. Mental Health Phys Act. 2010;3:23–5.

    Article  Google Scholar 

  242. Anokye NK, Trueman P, Green C, et al. Physical activity and health related quality of life. BMC Public Health. 2012;12:624.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Withall J, Stahi A, Davis M, et al. Objective indicators of physical activity and sedentary time and associations with subjective well-being in adults aged 70 and over. Int J Environ Res Public Health. 2014;11(1):643–56.

    Article  PubMed  PubMed Central  Google Scholar 

  244. Jepsen R, Aadland E, Andersen JR, et al. Associations between physical activity and quality of life outcomes in adults with severe obesity: a cross-sectional study prior to the beginning of a lifestyle intervention. Health Qual Life Outcomes. 2013;11:187.

    Article  PubMed  PubMed Central  Google Scholar 

  245. Vallance JKH, Murray TC, Johnson ST, et al. Quality of life and psychosocial health in postmenopausal women achieving public health guidelines for physical activity. Menopause. 2010;17(1):64–71.

    Article  PubMed  Google Scholar 

  246. Kerr J, Sallis JF, Saelens BE, et al. Outdoor physical activity and self rated health in older adults living in two regions of the U.S. Int J Behav Nutr Phys Act. 2012;9:898.

    Google Scholar 

  247. Herman KM, Sabiston C, Tremblay A, et al. Self-rated health in children at risk for obesity: associations of physical activity, sedentary behaviour, and BMI. J Phys Act Health. 2014;11(3):543–52.

    Article  PubMed  Google Scholar 

  248. Tsiros MD, Buckley JD, Howe PRC, et al. Day-to-day physical functioning and disability in obese 10- to 13-year-olds. Pediatr Obes. 2013;8(1):31–41.

    Article  CAS  PubMed  Google Scholar 

  249. Shoup JA, Gattshall M, Dandamudi P, et al. Physical activity, quality of life, and weight status in overweight children. Qual Life Res. 2008;17(3):407–12.

    Article  PubMed  Google Scholar 

  250. Freak-Poli R, Wolfe R, Wong E, et al. Change in well-being amongst participants in a four-month pedometer based workplace health program. BMC Public Health. 2014;14:953.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Mutrie N, Doolin O, Fitzsimons CT, et al. Increasing older adults’ walking through primary care: results of a pilot randomized controlled trial. Fam Pract. 2012;29(6):633–42.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Fortuno G, Jesus R, Vinets J, et al. Medida de la capacidad funcional y la calidad de vida relacionada con la salud de un grupo de personas mayores que llevan a cabo un programa de caminatas: estudio piloto [Measurement of functional capacity and health related quality of life in an elderly group following a walking program: pilot study] [Spanish]. Rev Esp Geriatr Gerontol. 2011;46(3):147–50.

    Article  Google Scholar 

  253. Hawkes AL, Patrao T, Green A, et al. CanPrevent: a telephone-delivered intervention to reduce multiple behavioural risk factors for colorectal cancer. BMC Cancer. 2012;12:560.

    Article  PubMed  PubMed Central  Google Scholar 

  254. Long JE, Ring C, Bosch JA, et al. A life-style physical activity intervention and the antibody response to pneumococcal vaccination in women. Psychosom Med. 2013;75(8):774–82.

    Article  CAS  PubMed  Google Scholar 

  255. Morgan PJ, Callister R, Collins CE, et al. The SHED-IT community trial: a randomized controlled trial of internet- and paper-based weight loss programs tailored for overweight and obese men. Ann Behav Med. 2013;45(2):139–52.

    Article  PubMed  Google Scholar 

  256. Fitzsimons CF, Baker G, Gray SR, et al. Does physical activity counselling enhance the effects of a pedometer-based intervention over the long-term: 12-month findings from the Walking for Wellbeing in the West study. BMC Public Health. 2012;12:206.

    Article  PubMed  PubMed Central  Google Scholar 

  257. Wallmann B, Frobiese I. Intervention Auswirkungen der 3000 Schritte mehr pro Tag [Intervention effects of 3000 steps more per day] [German]. Wien Klin Wochenschr. 2011;123(11–12):369–77.

    Article  PubMed  Google Scholar 

  258. Harding J, Freak-Poli R, Backholer K, et al. Change in health-related quality of life amongst participants in a 4-month pedometer-based workplace health program. J Phys Act Health. 2013;10(4):533–43.

    PubMed  Google Scholar 

  259. De Bock F, Genser B, Raat H, et al. A participatory physical activity intervention in preschools: a cluster randomized controlled trial. Am J Prev Med. 2013;45(1):64–74.

    Article  PubMed  Google Scholar 

  260. Wafa SW, Talib RA, Hamzaid NH, et al. Randomized controlled trial of a good practice approach to treatment of childhood obesity in Malaysia: Malaysian Childhood Obesity Treatment Trial (MASCOT). Int J Pediatr Obes. 2011;6(2–2):e62–9.

    Article  PubMed  Google Scholar 

  261. Müller J, Hess J, Hager A. Daily physical activity in adults with congenital heart disease is positively correlated with exercise capacity but not with quality of life. Clin Res Cardiol. 2011;101(1):55–61.

    Article  PubMed  Google Scholar 

  262. Muller JH, Hager A. Daily physical activity in adults with congenital heart disease is positively correlated with exercise capacity but not with quality of life. Clin Res Cardiol. 2012;101(1):55–61.

    Article  PubMed  Google Scholar 

  263. Izawa KP, Yamada S, Oka K, et al. Long-term exercise maintenance, physical activity, and health-relayed quality of life after cardiac rehabilitation. Am J Phys Med Rehabil. 2004;83:884–92.

    Article  PubMed  Google Scholar 

  264. Reid RD, Morrin LI, Beaton LJ, et al. Randomized trial of an internet-based computer-tailored expert system for physical activity in patients with heart disease. Eur J Prev Cardiol. 2012;19(6):1357–65.

    Article  PubMed  Google Scholar 

  265. Houle J, Doyon O, Vadeboncoeur N, et al. Effectiveness of a pedometer-based program using a socio-cognitive intervention on physical activity and quality of life in a setting of cardiac rehabilitation. Can J Cardiol. 2012;28(1):27–32.

    Article  PubMed  Google Scholar 

  266. Borland M, Rosenkvist A, Cider A. A group-based exercise program did not improve physical activity in patients with chronic heart failure and comorbidity: a randomized controlled trial. J Rehabil Med. 2014;46(5):461–7.

    Article  PubMed  Google Scholar 

  267. Gottlieb SS, Fisher ML, Freudenberger R, et al. Effects of exercise training on peak performance and quality of life in congestive heart failure patients. J Card Fail. 1999;5(3):188–94.

    Article  CAS  PubMed  Google Scholar 

  268. Rand D, Eng JJ, Tang P-F, et al. Daily physical activity and its contribution to the health-related quality of life of ambulatory individuals with chronic stroke. Health Qual Life Outcomes. 2010;8:80.

    Article  PubMed  PubMed Central  Google Scholar 

  269. Jehn M, Schindler C, Meyer A, et al. Daily walking intensity as a predictor of quality of life in patients with chronic obstructive pulmonary disease. Med Sci Sports Exerc. 2012;44(7):1212–8.

    Article  PubMed  Google Scholar 

  270. HajGhanbari B, Garland SJ, Road JD, et al. Pain and physical performance in people with COPD. Respir Med. 2013;107(11):1692–9.

    Article  PubMed  Google Scholar 

  271. Mador MJ, Patel AN, Nadler J. Effects of pulmonary rehabilitation on activity levels in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2011;31(1):52–9.

    Article  PubMed  Google Scholar 

  272. Nguyen HQ, Gill DP, Wolpin S, et al. Pilot study of a cell phone-based exercise persistence intervention post-rehabilitation for COPD. Int J Chron Obstruct Pulmon Dis. 2009;4:301–13.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Hospes G, Bossenbroek L, Ten Hacken NHT, et al. Enhancement of daily physical activity increases physical fitness of outclinic COPD patients: results of an exercise counseling program. Patient Educ Couns. 2009;75(2):274–8.

    Article  PubMed  Google Scholar 

  274. de Blok BMJ, de Greef MHG, ten Hacken NHT, et al. The effects of a lifestyle physical activity counseling program with feedback of a pedometer during pulmonary rehabilitation in patients with COPD: a pilot study. Patient Educ Couns. 2006;61(1):48–55.

    Article  PubMed  Google Scholar 

  275. Mutrie N, Hillis S, MacIntyre PD. A randomized, controlled trial to study the effect of exercise consultation on the promotion of physical activity in people with type 2 diabetes: a pilot study. Diabet Med. 2002;18(11):877–82.

    Google Scholar 

  276. Vallance JKH, Boyle JK, Courneya TJ, et al. Associations of objectively assessed physical activity and sedentary time with health-related quality of life among colon cancer survivors. Cancer. 2014;120(18):2919–26.

    Article  PubMed  Google Scholar 

  277. Phillips SM, McAuley E. Physical activity and quality of life in breast cancer survivors: the role of self-efficacy and health status. Psychooncology. 2014;23(1):27–34.

    Article  PubMed  Google Scholar 

  278. Von Gruenigen VE, Frasure HE, Kavanagh MB, et al. Feasibility of a lifestyle intervention for ovarian cancer patients receiving adjuvant chemotherapy. Gynecol Oncol. 2011;122(2):328–33.

    Article  Google Scholar 

  279. Prioreschi A, Hodkinson B, Avidon I, et al. The clinical utility of accelerometry in patients with rheumatoid arthritis. Rheumatology. 2013;52(9):1721–7.

    Article  PubMed  Google Scholar 

  280. Harding P, Hollandd AE, Delany C, et al. Do activity levels increase after total hip and knee arthroplasty? Clin Orthop Relat Res. 2014;472(5):1502–11.

    Article  PubMed  Google Scholar 

  281. Brandes M, Ringling M, Winter C, et al. Changes in physical activity and health-related quality of life during the first year after total knee arthroplasty. Arthritis Care Res. 2011;63(3):328–34.

    Google Scholar 

  282. Moti RW, McAuley E, Snook EM, et al. Physical activity and quality of life in multiple sclerosis: intermediary roles of disability, fatigue, mood, pain, self-efficacy and social support. Psychol Health Med. 2009;14(1):111–24.

    Article  Google Scholar 

  283. Katayama A, Miyatake N, Nishi H, et al. Evaluation of physical activity and its relationship to health-related quality of life in patients on chronic hemodialysis. Environ Health Prev Med. 2014;19(3):220–5.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Shephard RJ. Aging, physical activity and health. Champaign, IL: Human Kinetics; 1997.

    Google Scholar 

  285. Paterson DH, Stathokostas L. Physical activity, fitness, and gender in relation to morbidity, survival, quality o life, and independence in older ages. In: Shephard RJ, editor. Gender, physical activity and aging. Boca Raton, FL: CRC Press; 2001. p. 99–120.

    Chapter  Google Scholar 

  286. Aoyagi Y, Park H, Watanabe E, et al. Habitual physical activity and physical fitness in older Japanese adults: the Nakanojo study. Gerontology. 2009;55:523–31.

    Article  PubMed  Google Scholar 

  287. Park H, Park S, Shephard RJ, et al. Yearlong physical activity and sarcopenia in older adults: the Nakanojo study. Eur J Appl Physiol. 2010;109(5):953–61.

    Article  PubMed  Google Scholar 

  288. Cao Z-B, Miyatake N, Higuchi M, et al. Predicting VO2max with an objectively measured physical activity in Japanese women. Med Sci Sports Exerc. 2010;42(1):179–86.

    Article  PubMed  Google Scholar 

  289. Cao Z-B, Miyatake N, Higuchi M, et al. Prediction of VO2max with daily step counts for adult Japanese women. Eur J Appl Physiol. 2009;105:289–96.

    Article  PubMed  Google Scholar 

  290. Novoa NM, Varela G, Jimenez MF, et al. Value of the average basal daily walked distance measured using a pedometer to predict maximum oxygen consumption per minute in patients undergoing lung resection. Eur J Cardiothorac Surg. 2011;39(5):756–62.

    Article  PubMed  Google Scholar 

  291. Yasunaga A, Park H, Watanabe E, et al. Development and evaluation of the physical activity questionnaire for elderly Japanese: the Nakanojo study. J Aging Phys Act. 2007;15:398–411.

    PubMed  Google Scholar 

  292. Orrell A, Doherty P, Miles J, et al. Development and validation of a very brief questionnaire measure of physical activity in adults with coronary heart disease. Eur J Cardiovasc Prev Rehabil. 2007;14:615–23.

    Article  PubMed  Google Scholar 

  293. Pilai V, Steenburg LA, Ciesla JA, et al. A seven day actigraphy-based study of rumination and sleep disturbance among young adults with depressive symptoms. J Psychosom Res. 2014;77(1):70–3.

    Article  Google Scholar 

  294. Anderson KN, Katt M, Collerton J, et al. Assessment of sleep and circadian rhythm disorders in the very old: the Newcastle 85+ Cohort Study. Age Ageing. 2014;43(1):57–63.

    Article  PubMed  Google Scholar 

  295. Verwimp J, Amewye L, Bruyneel M. Correlation between sleep parameters, physical activity and quality of life in somnolent moderate to severe obstructive sleep apnea adult patients. Sleep Breath. 2013;17(3):903–4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy J. Shephard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shephard, R.J. (2016). New Perspectives on Activity/Disease Relationships Yielded by Objective Monitoring. In: Shephard, R., Tudor-Locke, C. (eds) The Objective Monitoring of Physical Activity: Contributions of Accelerometry to Epidemiology, Exercise Science and Rehabilitation. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-29577-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29577-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29575-6

  • Online ISBN: 978-3-319-29577-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics