Skip to main content

Abstract

Recent research suggests that there are biological mechanisms provoked by sedentary behaviours that result in health consequences even after accounting for the influence of an individual’s habitual physical activity. Objective monitors, like accelerometers and inclinometers, allow for the direct measurement of the time spent sedentary in addition to monitoring the extent of physical activity. This allows for epidemiological analyses considering either behaviour or both behaviours in combination. The relatively new field of sedentary physiology and epidemiology allows for creative exploration of correlates, determinants, and consequences of varying levels of sedentary behaviour that can inform novel interventions to promote healthy living.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.

    Article  CAS  PubMed  Google Scholar 

  2. Chaput JP, Carson V, Gray CE, et al. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11(12):12575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Colley RC, Garriguet D, Janssen I, et al. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1):15–23.

    PubMed  Google Scholar 

  4. Colley RC, Garriguet D, Janssen I, et al. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1):7–14.

    PubMed  Google Scholar 

  5. Matthews CE, Chen KY, Freedson PS, et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ruiz JR, Ortega FB, Martinez-Gomez D, et al. Objectively measured physical activity and sedentary time in European adolescents: the HELENA study. Am J Epidemiol. 2011;174(2):173–84.

    Article  PubMed  Google Scholar 

  7. Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Can J Public Health. 2007;98 Suppl 2:S195–207.

    PubMed  Google Scholar 

  8. Wilmot EG, Edwardson CL, Achana F, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia. 2012;55(11):2895–905.

    Article  CAS  PubMed  Google Scholar 

  9. Lynch BM. Sedentary behavior and cancer: a systematic review of the literature and proposed biological mechanisms. Cancer Epidemiol Biomarkers Prev. 2010;19(11):2691–709.

    Article  PubMed  Google Scholar 

  10. Thorp AA, Owen N, Neuhaus M, et al. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.

    Article  PubMed  Google Scholar 

  11. Proper KI, Singh AS, van Mechelen W, et al. Sedentary behaviors and health outcomes among adults: a systematic review of prospective studies. Am J Prev Med. 2011;40(2):174–82.

    Article  PubMed  Google Scholar 

  12. Biswas A, Oh PI, Faulkner GE, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.

    Article  PubMed  Google Scholar 

  13. LeBlanc AG, Spence JC, Carson V, et al. Systematic review of sedentary behaviour and health indicators in the early years (aged 0–4 years). Appl Physiol Nutr Metab. 2012;37(4):753–72.

    Article  PubMed  Google Scholar 

  14. Tremblay MS, LeBlanc AG, Kho ME, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.

    Article  PubMed  Google Scholar 

  16. Tremblay MS, Colley RC, Saunders TJ, et al. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35(6):725–40.

    Article  PubMed  Google Scholar 

  17. Hamilton MT, Hamilton DG, Zderic TW. Role of low energy expenditure and sitting in obesity, metabolic syndrome, type 2 diabetes, and cardiovascular disease. Diabetes. 2007;56(11):2655–67.

    Article  CAS  PubMed  Google Scholar 

  18. Saunders TJ, Larouche R, Colley RC, et al. Acute sedentary behaviour and markers of cardiometabolic risk: a systematic review of intervention studies. J Nutr Metabol. 2012;2012(2012):712435.

    Google Scholar 

  19. Duvivier BM, Schaper NC, Bremers MA, et al. Minimal intensity physical activity (standing and walking) of longer duration improves insulin action and plasma lipids more than shorter periods of moderate to vigorous exercise (cycling) in sedentary subjects when energy expenditure is comparable. PLoS One. 2013;8(2):e55542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Peddie MC, Bone JL, Rehrer NJ, et al. Breaking prolonged sitting reduces postprandial glycemia in healthy, normal-weight adults: a randomized crossover trial. Am J Clin Nutr. 2013;98(2):358–66.

    Article  CAS  PubMed  Google Scholar 

  21. Dunstan DW, Kingwell BA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–83.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Buckley JP, Mellor DD, Morris M, et al. Standing-based office work shows encouraging signs of attenuating post-prandial glycaemic excursion. Occup Environ Med. 2014;71(2):109–11.

    Article  PubMed  Google Scholar 

  23. Saunders TJ, Chaput JP, Goldfield GS, et al. Prolonged sitting and markers of cardiometabolic disease risk in children and youth: a randomized crossover study. Metabolism. 2013;62(10):1423–8.

    Article  CAS  PubMed  Google Scholar 

  24. Sisson SB, Anderson AE, Short KR, et al. Light activity following a meal and postprandial cardiometabolic risk in adolescents. Pediatr Exerc Sci. 2013;25(3):347–59.

    PubMed  Google Scholar 

  25. Megeney LA, Neufer PD, Dohm GL, et al. Effects of muscle activity and fiber composition on glucose transport and GLUT-4. Am J Physiol. 1993;264(4 Pt 1):E583–93.

    CAS  PubMed  Google Scholar 

  26. Richter EA, Kiens B, Mizuno M, et al. Insulin action in human thighs after one-legged immobilization. J Appl Physiol (1985). 1989;67(1):19–23.

    CAS  Google Scholar 

  27. Chilibeck PD, Bell G, Jeon J, et al. Functional electrical stimulation exercise increases GLUT-1 and GLUT-4 in paralyzed skeletal muscle. Metabolism. 1999;48(11):1409–13.

    Article  CAS  PubMed  Google Scholar 

  28. Phillips SM, Stewart BG, Mahoney DJ, et al. Body-weight-support treadmill training improves blood glucose regulation in persons with incomplete spinal cord injury. J Appl Physiol (1985). 2004;97(2):716–24.

    Article  CAS  Google Scholar 

  29. Petrie M, Suneja M, Shields RK. Low-frequency stimulation regulates metabolic gene expression in paralyzed muscle. J Appl Physiol (1985). 2015;118(6):723–31.

    Article  CAS  Google Scholar 

  30. Latouche C, Jowett JB, Carey AL, et al. Effects of breaking up prolonged sitting on skeletal muscle gene expression. J Appl Physiol (1985). 2013;114(4):453–60.

    Article  CAS  Google Scholar 

  31. Shvartz E, Gaume JG, White RT, Reibold RC. Hemodynamic responses during prolonged sitting. J Appl Physiol Respir Environ Exerc Physiol. 1983;54(6):1673–80.

    CAS  PubMed  Google Scholar 

  32. Larsen RN, Kingwell BA, Sethi P, et al. Breaking up prolonged sitting reduces resting blood pressure in overweight/obese adults. Nutr Metab Cardiovasc Dis. 2014;24(9):976–82.

    Article  CAS  PubMed  Google Scholar 

  33. Thosar SS, Bielko SL, Wiggins CC, et al. Differences in brachial and femoral artery responses to prolonged sitting. Cardiovasc Ultrasound. 2014;12:50.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hamburg NM, McMackin CJ, Huang AL, et al. Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol. 2007;27(12):2650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saunders TJ, Chaput JP. Is obesity prevention as simple as turning off the television and having a nap? Br J Nutr. 2012;108(5):946–7.

    Article  CAS  PubMed  Google Scholar 

  36. Vallance JK, Buman MP, Stevinson C, et al. Associations of overall sedentary time and screen time with sleep outcomes. Am J Health Behav. 2015;39(1):62–7.

    Article  PubMed  Google Scholar 

  37. Harris JL, Bargh JA, Brownell KD. Priming effects of television food advertising on eating behavior. Health Psychol. 2009;28(4):404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chaput JP, Visby T, Nyby S, et al. Video game playing increases food intake in adolescents: a randomized crossover study. Am J Clin Nutr. 2011;93(6):1196–203.

    Article  CAS  PubMed  Google Scholar 

  39. Chaput JP, Despres JP, Bouchard C, et al. The association between sleep duration and weight gain in adults: a 6-year prospective study from the Quebec Family Study. Sleep. 2008;31(4):517–23.

    PubMed  PubMed Central  Google Scholar 

  40. Patel SR, Hu FB. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring). 2008;16(3):643–53.

    Article  Google Scholar 

  41. Owen N, Sugiyama T, Eakin EE, et al. Adults’ sedentary behavior determinants and interventions. Am J Prev Med. 2011;41(2):189–96.

    Article  PubMed  Google Scholar 

  42. Salmon J, Tremblay MS, Marshall SJ, et al. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41(2):197–206.

    Article  PubMed  Google Scholar 

  43. Hinkley T, Salmon J, Okely AD, et al. Correlates of sedentary behaviours in preschool children: a review. Int J Behav Nutr Phys Act. 2010;7:66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Van Der Horst K, Paw MJ, Twisk JW, et al. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39(8):1241–50.

    Article  Google Scholar 

  45. Lubans DR, Hesketh K, Cliff DP, et al. A systematic review of the validity and reliability of sedentary behaviour measures used with children and adolescents. Obes Rev. 2011;12(10):781–99.

    Article  CAS  PubMed  Google Scholar 

  46. Gorely T, Marshall SJ, Biddle SJ. Couch kids: correlates of television viewing among youth. Int J Behav Med. 2004;11(3):152–63.

    Article  PubMed  Google Scholar 

  47. Hoyos Cillero I, Jago R. Systematic review of correlates of screen-viewing among young children. Prev Med. 2010;51(1):3–10.

    Article  PubMed  Google Scholar 

  48. Biddle SJ, Gorely T, Marshall SJ. Is television viewing a suitable marker of sedentary behavior in young people? Ann Behav Med. 2009;38(2):147–53.

    Article  PubMed  Google Scholar 

  49. Klitsie T, Corder K, Visscher TL, et al. Children’s sedentary behaviour: descriptive epidemiology and associations with objectively-measured sedentary time. BMC Public Health. 2013;13:1092.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Steele RM, van Sluijs EM, Sharp SJ, et al. An investigation of patterns of children’s sedentary and vigorous physical activity throughout the week. Int J Behav Nutr Phys Act. 2010;7:88.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Byun W, Dowda M, Pate RR. Correlates of objectively measured sedentary behavior in US preschool children. Pediatrics. 2011;128(5):937–45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. King AC, Parkinson KN, Adamson AJ, et al. Correlates of objectively measured physical activity and sedentary behaviour in English children. Eur J Public Health. 2011;21(4):424–31.

    Article  PubMed  Google Scholar 

  53. Gomes TN, dos Santos FK, Santos D, et al. Correlates of sedentary time in children: a multilevel modelling approach. BMC Public Health. 2014;14:890.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42(3):e3–28.

    Article  PubMed  Google Scholar 

  55. Marshall SJ, Ramirez E. Reducing sedentary behavior: a new paradigm in physical activity promotion. Am J Lifestyle Med. 2011;5:518–30.

    Article  Google Scholar 

  56. Owen N, Healy GN, Matthews CE, et al. Too much sitting: the population health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38(3):105–13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Healy GN, Dunstan DW, Salmon J, et al. Breaks in sedentary time: beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.

    Article  PubMed  Google Scholar 

  58. Healy GN, Matthews CE, Dunstan DW, et al. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003–06. Eur Heart J. 2011;32(5):590–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. de Rezende LF, Rodrigues Lopes M, Rey-Lopez JP, et al. Sedentary behavior and health outcomes: an overview of systematic reviews. PLoS One. 2014;9(8):e105620.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Chinapaw MJ, Proper KI, Brug J, et al. Relationship between young peoples’ sedentary behaviour and biomedical health indicators: a systematic review of prospective studies. Obes Rev. 2011;12(7):e621–32.

    Article  CAS  PubMed  Google Scholar 

  61. Grontved A, Hu FB. Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis. JAMA. 2011;305(23):2448–55.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ford ES, Caspersen CJ. Sedentary behaviour and cardiovascular disease: a review of prospective studies. Int J Epidemiol. 2012;41(5):1338–53.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Edwardson CL, Gorely T, Davies MJ, et al. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS One. 2012;7(4), e34916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. de Rezende LF, Rey-Lopez JP, Matsudo VK, et al. Sedentary behavior and health outcomes among older adults: a systematic review. BMC Public Health. 2014;14:333.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Pavey TG, Peeters GG, Brown WJ. Sitting-time and 9-year all-cause mortality in older women. Br J Sports Med. 2015;49(2):95–9.

    Article  PubMed  Google Scholar 

  66. Leon-Munoz LM, Martinez-Gomez D, Balboa-Castillo T, et al. Continued sedentariness, change in sitting time, and mortality in older adults. Med Sci Sports Exerc. 2013;45(8):1501–7.

    Article  PubMed  Google Scholar 

  67. Gao X, Nelson ME, Tucker KL. Television viewing is associated with prevalence of metabolic syndrome in Hispanic elders. Diabetes Care. 2007;30(3):694–700.

    Article  PubMed  Google Scholar 

  68. Gennuso KP, Gangnon RE, Matthews CE, et al. Sedentary behavior, physical activity, and markers of health in older adults. Med Sci Sports Exerc. 2013;45(8):1493–500.

    Article  PubMed  Google Scholar 

  69. Bankoski A, Harris TB, McClain JJ, et al. Sedentary activity associated with metabolic syndrome independent of physical activity. Diabetes Care. 2011;34(2):497–503.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Carson V, Wong SL, Winkler E, et al. Patterns of sedentary time and cardiometabolic risk among Canadian adults. Prev Med. 2014;65:23–7.

    Article  PubMed  Google Scholar 

  71. Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11:274.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Colley RC, Garriguet D, Janssen I, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian Health Measures Survey. BMC Public Health. 2013;13:200.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Carson V, Stone M, Faulkner G. Patterns of sedentary behavior and weight status among children. Pediatr Exerc Sci. 2014;26(1):95–102.

    Article  PubMed  Google Scholar 

  74. Saunders TJ, Prince SA, Tremblay MS. Clustering of children’s activity behaviour: the use of self-report versus direct measures. Int J Behav Nutr Phys Act. 2011;8:48. author reply 9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Colley RC, Wong SL, Garriguet D, et al. Physical activity, sedentary behaviour and sleep in Canadian children: parent-report versus direct measures and relative associations with health risk. Health Rep. 2012;23(2):45–52.

    PubMed  Google Scholar 

  76. Ekelund U, Luan J, Sherar LB, et al. Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. JAMA. 2012;307(7):704–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chinapaw MJ, de Niet M, Verloigne M, et al. From sedentary time to sedentary patterns: accelerometer data reduction decisions in youth. PLoS One. 2014;9(11):e111205.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Dowd KP, Harrington DM, Donnelly AE. Criterion and concurrent validity of the activPAL professional physical activity monitor in adolescent females. PLoS One. 2012;7(10):e47633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ridgers ND, Salmon J, Ridley K, et al. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mailey EL, Gothe NP, Wojcicki TR, et al. Influence of allowable interruption period on estimates of accelerometer wear time and sedentary time in older adults. J Aging Phys Act. 2014;22(2):255–60.

    Article  PubMed  Google Scholar 

  81. Tudor-Locke C, Camhi SM, Troiano RP. A catalog of rules, variables, and definitions applied to accelerometer data in the National Health and Nutrition Examination Survey, 2003–2006. Prev Chronic Dis. 2012;9:E113.

    PubMed  PubMed Central  Google Scholar 

  82. Atkin AJ, Ekelund U, Moller NC, et al. Sedentary time in children: influence of accelerometer processing on health relations. Med Sci Sports Exerc. 2013;45(6):1097–104.

    Article  PubMed  Google Scholar 

  83. Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ryde GC, Brown HE, Peeters GM, et al. Desk-based occupational sitting patterns: weight-related health outcomes. Am J Prev Med. 2013;45(4):448–52.

    Article  PubMed  Google Scholar 

  85. Ryde GC, Gilson ND, Suppini A, et al. Validation of a novel, objective measure of occupational sitting. J Occup Health. 2012;54(5):383–6.

    Article  PubMed  Google Scholar 

  86. Sisson SB, Broyles ST, Baker BL, et al. Television, reading, and computer time: correlates of school-day leisure-time sedentary behavior and relationship with overweight in children in the U.S. J Phys Act Health. 2011;8 Suppl 2:S188–97.

    PubMed  Google Scholar 

  87. Wilson RS, Mendes De Leon CF, Barnes LL, et al. Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA. 2002;287(6):742–8.

    Article  PubMed  Google Scholar 

  88. Healy GN, Owen N. Sedentary behaviour and biomarkers of cardiometabolic health risk in adolescents: an emerging scientific and public health issue. Rev Esp Cardiol. 2010;63(3):261–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerie Carson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carson, V., Saunders, T., Tremblay, M.S. (2016). Can the Epidemiologist Learn more from Sedentary Behaviour than from the Measurement of Physical Activity?. In: Shephard, R., Tudor-Locke, C. (eds) The Objective Monitoring of Physical Activity: Contributions of Accelerometry to Epidemiology, Exercise Science and Rehabilitation. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-29577-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29577-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29575-6

  • Online ISBN: 978-3-319-29577-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics