Skip to main content

New Information on Population Activity Patterns Revealed by Objective Monitoring

  • Chapter
  • First Online:
  • 1128 Accesses

Part of the book series: Springer Series on Epidemiology and Public Health ((SSEH))

Abstract

Objective monitors allow a variety of new and established physical activity variables to be evaluated. Time-stamped devices that can measure movement intensity with high resolution permit the determination and assessment of a myriad of movement measurements. Whereas traditional self-report metrics are limited by the burdens of recall and response, new objective measures allow for multiple indices of intensity, duration, frequency, amount, pattern and sequence of movement activities to be calculated and used in epidemiological analyses. These new metrics enable an examination of all movement behaviours (physical activity, sedentary behaviours and sleep), together with their interactions and their combined relationships with health indicators. Although monitors can still be enhanced, and more research is required, the new generation of metrics already provides opportunity to advance the understanding of movement behavior epidemiology significantly and to validate previous work carried out with less robust or complete measures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Haskell WL. Physical activity by self-report: a brief history and future issues. J Phys Act Health. 2012;9 Suppl 1:S5–10.

    PubMed  Google Scholar 

  2. Shephard RJ. Limits to the measurement of physical activity by questionnaires. Br J Sport Med. 2003;37:197–206.

    Article  CAS  Google Scholar 

  3. Adamo KB, Prince SA, Tricco AC, Connor-Gorber S, Tremblay MS. A comparison of indirect versus direct measures for assessing physical activity in the pediatric population: a systematic review. Int J Pediatr Obes. 2009;4(1):2–27.

    Article  PubMed  Google Scholar 

  4. Corder K, Ekelund U, Steele RM, Wareham NJ, Brage S. Assessment of physical activity in youth. J Appl Physiol. 2008;105:977–87.

    Article  PubMed  Google Scholar 

  5. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay MS. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Basterfield L, Adamson AJ, Parkinson KN, et al. Surveillance of physical activity in the UK is flawed: validation of the health survey for England Physical Activity Questionnaire. Arch Dis Child. 2008;93:1054–8.

    Article  CAS  PubMed  Google Scholar 

  7. Statistics Canada. Physical activity during leisure time, 2013. http://www.statcan.gc.ca/pub/82-625-x/2014001/article/14024-eng.htm. Accessed 2 Mar 2015.

  8. Statistics Canada. Directly measured physical activity of adults, 2012 and 2013. http://www.statcan.gc.ca/pub/82-625-x/2015001/article/14135-eng.htm. Accessed 2 Mar 2015.

  9. Statistics Canada. Directly measured physical activity of children and youth, 2012 and 2013. http://www.statcan.gc.ca/pub/82-625-x/2015001/article/14136-eng.htm. Accessed 2 Mar 2015.

  10. Katzmarzyk PT, Tremblay MS. Limitations of Canada’s physical activity data: implications for monitoring trends. Appl Physiol Nutr Metabol. 2007;32(Suppl 2E):S185–94.

    Article  Google Scholar 

  11. Bouchard C, Blair SN, Haskell WL. History and current status of the study of physical activity and health. In: Bouchard C, Blair SN, Haskell WL, editors. Physical activity and health. 2nd ed. Champaign, IL: Human Kinetics; 2012.

    Google Scholar 

  12. Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.

    Article  PubMed  Google Scholar 

  13. Craig CL, Cameron C, Griffiths JM, Tudor-Locke C. Process and treatment of pedometer data collection for youth: the Canadian physical activity levels among youth study. Med Sci Sports Exerc. 2010;42:1639–43.

    Article  PubMed  Google Scholar 

  14. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the Canadian Health Measures Survey. Health Rep. 2011;22(1):7–14.

    PubMed  Google Scholar 

  15. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the Canadian Health Measures Survey. Health Rep. 2011;22(1):15–23.

    PubMed  Google Scholar 

  16. Craig R, Mindell J, Hirani V. Health Survey for England 2008: physical activity and fitness. Summary of key findings. http://www.hscic.gov.uk/catalogue/PUB00430/heal-surv-phys-acti-fitn-eng-2008-rep-v1.pdf. Accessed 2 Mar 2015.

  17. Carson V, Ridgers ND, Howard BJ, Winkler EAH, Healy GN, Owen N, Dunstan DW, Salmon J. Light-intensity physical activity and cardiometabolic biomarkers in US adolescents. PLoS ONE. 2013;8(8), e71417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Camhi SM, Sisson SB, Johnson WD, Katzmarzyk PT, Tudor-Locke C. Accelerometer-determined moderate intensity lifestyle activity and cardiometabolic health. Prev Med. 2011;52:358–60.

    Article  PubMed  Google Scholar 

  19. Matthews CE, Chen KY, Freedson PS, Buchowsky MS, Beech BM, Pate RR, Troiano RP. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):875–81.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Colley RC, Garriguet D, Adamo KB, Carson V, Janssen I, Timmons BW, Tremblay MS. Physical activity and sedentary behavior during the early years in Canada: a cross-sectional study. Int J Behav Nutr Phys Act. 2013;10:54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Craig CL, Cameron C, Tudor-Locke C. CANPLAY pedometer normative reference data for 21,271 children and 12,956 adolescents. Med Sci Sports Exerc. 2013;45(1):123–9.

    Article  PubMed  Google Scholar 

  22. Riddoch C, Edwards D, Page A, et al. The European Youth Heart Study—cardiovascular disease risk factors in children: rationale, aims, study design, and validation of methods. J Phys Act Health. 2005;2:115–29.

    Google Scholar 

  23. Riddoch CJ, Andersen LB, Wedderkopp N, Harro M, Klasson-Heggebø L, Sardinha LB, Cooper AR, Ekelund U. Physical activity levels and patterns of 9 and 15-yr-old European children. Med Sci Sports Exerc. 2004;36(1):86–92.

    Article  PubMed  Google Scholar 

  24. Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, Anderssen SA. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European Youth Heart Study). Lancet. 2006;368(9532):299–304.

    Article  PubMed  Google Scholar 

  25. Ruiz JR, Ortega FB, Martínez-Gómez D, et al. Objectively measured physical activity and sedentary time in European adolescents. Am J Epidemiol. 2011;174(2):173–84.

    Article  PubMed  Google Scholar 

  26. Ness AR, Leary SD, Mattocks C, et al. Objectively measured physical activity and fat mass in a large cohort of children. PLoS Med. 2007;4(3):476–84.

    Article  Google Scholar 

  27. Riddoch CJ, Leary SD, Ness AR, et al. Prospective associations between objective measures of physical activity and fat mass in 12–14 year old children: the Avon Longitudinal Study of Parents and Children (ALSPAC). BMJ. 2009;339:b4544.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Konstabel K, Veidebaum T, Verbestel V, et al. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes. 2014;38:S135–43.

    Article  Google Scholar 

  29. Dunstan DW, Kingwell DA, Larsen R, et al. Breaking up prolonged sitting reduces postprandial glucose and insulin responses. Diabetes Care. 2012;35(5):976–83.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Smith L, Ekelund U, Hamer M. The potential yield of non-exercise physical activity energy expenditure in public health. Sports Med. 2015;45(4):449–52.

    Article  PubMed  Google Scholar 

  31. Tremblay MS, Esliger DW, Tremblay A, Colley R. Incidental movement, lifestyle-embedded activity and sleep: new frontiers in physical activity assessment. Appl Physiol Nutr Metabol. 2007;32(Suppl 2E):S208–17.

    Article  Google Scholar 

  32. Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, Martin CK, Blair SN, Bouchard C. Trends over 5 decades in U.S. occupation-related physical activity and their association with obesity. PLoS ONE. 2011;6(5):e19657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bassett DR, Tremblay MS, Esliger DW, Copeland JL, Barnes JD, Huntington GE. Physical activity and body mass index of children in an old-order Mennonite community. Med Sci Sports Exerc. 2007;39:410–5.

    Article  PubMed  Google Scholar 

  34. Tremblay MS, Esliger DW, Copeland JL, Barnes JD, Bassett DR. Moving forward by looking back: lessons learned from lost lifestyles. Appl Physiol Nutr Metabol. 2008;33(4):836–42.

    Article  Google Scholar 

  35. Katzmarzyk PT, Mason C. The physical activity transition. J Phys Act Health. 2009;6:269–80.

    PubMed  Google Scholar 

  36. Ojiambo RM, Easton C, Casajus JA, Konstabel K, Reilly JJ, Pitsiladis Y. Effect of urbanization on objectively measures physical activity levels, sedentary time, and indices of adiposity in Kenyan adolescents. J Phys Act Health. 2012;9:115–23.

    PubMed  Google Scholar 

  37. Onywera VO, Adamo KB, Sheel AW, Waudo JN, Boit MK, Tremblay M. Emerging evidence of the physical activity transition in Kenya. J Phys Act Health. 2012;9:554–62.

    PubMed  Google Scholar 

  38. Esliger DW, Tremblay MS. Physical activity and inactivity profiling: the next generation. Appl Physiol Nutr Metabol. 2007;32(Suppl 2E):S195–207.

    Article  Google Scholar 

  39. Tremblay MS, Warburton DER, Janssen I, et al. New Canadian physical activity guidelines. Appl Physiol Nutr Metabol. 2011;36(1):36–46.

    Article  Google Scholar 

  40. Murphy MH, Blair SN, Murtagh EM. Accumulated versus continuous exercise for health benefit: a review of empirical studies. Sports Med. 2009;39(1):29–43.

    Article  PubMed  Google Scholar 

  41. Stone M, Rowlands AV, Middlebrooke AR, Jawis MN, Eston RG. The pattern of physical activity in relation to health outcomes in boys. Int J Pediatr Obes. 2009;4(4):306–15.

    Article  PubMed  Google Scholar 

  42. Holman RM, Carson V, Janssen I. Does the fractionalization of daily physical activity (sporadic vs. bouts) impact cardiometabolic risk factors in children and youth? PLoS ONE. 2009;6(10), e25733.

    Article  Google Scholar 

  43. Glazer NL, Lyass A, Esliger DW, et al. Sustained and shorter bouts of physical activity are related to cardiovascular health. Med Sci Sport Exerc. 2013;45(1):109–15.

    Article  Google Scholar 

  44. Miyashita M, Burns SF, Stensel DJ. Accumulating short bouts of brisk walking reduces postprandial plasma triacylglycerol concentration and resting blood pressure in healthy young men. Am J Clin Nutr. 2008;88(5):1225–31.

    CAS  PubMed  Google Scholar 

  45. Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.

    Article  CAS  PubMed  Google Scholar 

  46. Lee I-M, Sesso HD, Oguma Y, Paffenbarger Jr RS. The “weekend warrior” and risk of mortality. Am J Epidemiol. 2004;160(7):636–41.

    Article  PubMed  Google Scholar 

  47. Hardman AE. Acute responses to physical activity and exercise. In: Bouchard C, Blair SN, Haskell WL, editors. Physical activity and health. 2nd ed. Champaign, IL: Human Kinetics; 2012.

    Google Scholar 

  48. Active Healthy Kids Canada. Don’t let this be the most physical activity our kids get after school. 2011 Active Healthy Kids Canada Report Card on Physical Activity for Children and Youth. Toronto, ON: Active Healthy Kids Canada; 2011.

    Google Scholar 

  49. Brockman R, Jago R, Fox KR. The contribution of active play to the physical activity of primary school children. Prev Med. 2010;51(2):144–7.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Cleland V, Crawford D, Baur LA, Hume C, Timperio A, Salmon J. A prospective examination of children’s time spent outdoors, objectively measured physical activity and overweight. Int J Obes. 2008;32:1685–93.

    Article  CAS  Google Scholar 

  51. Pearce M, Page AS, Griffin TP, Cooper AR. Who children spend time with after school: association with objectively recorded indoor and outdoor physical activity. Int J Behav Nutr Phys Act. 2014;11(1):45.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43(1):48–56.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Levine JA, Eberhardt NL, Jensen MD. Role of non-exercise activity thermogenesis in resistance to fat gain in humans. Science. 1999;283:212–4.

    Article  CAS  PubMed  Google Scholar 

  54. Levine JA, Lanningham-Foster LM, McCrady SK, Krizan AC, Olson LR, Kane PH, Jensen MD, Clark MM. Interindividual variation in posture allocation: possible role in human obesity. Science. 2005;307:584–6.

    Article  CAS  PubMed  Google Scholar 

  55. Westerterp KR. Pattern and intensity of physical activity. Nature. 2001;410:539.

    Article  CAS  PubMed  Google Scholar 

  56. Colley RC, Hills AP, King NA, Byrne AM. Exercise-induced energy expenditure: implications for exercise prescription and obesity. Pat Educ Couns. 2010;79(3):327–32.

    Article  Google Scholar 

  57. Westerterp KR, Kester ADM. Physical activity in confined conditions as an indicator of free-living physical activity. Obes Res. 2003;11:865–8.

    Article  PubMed  Google Scholar 

  58. Sedentary Behaviour Research Network. Standardized use of the terms “sedentary” and “sedentary behaviours” [letter to the editor]. Obes Res. 2012;37:540e2.

    Google Scholar 

  59. Tremblay MS, Colley R, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.

    Article  PubMed  Google Scholar 

  60. Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, Goldfield G, Connor GS. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chaput JP, Carson V, Gray CE, Tremblay MS. Importance of all movement behaviors in a 24 hour period for overall health. Int J Environ Res Public Health. 2014;11:12575–81.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Chaput JP. Sleep patterns, diet quality and energy balance. Physiol Behav. 2014;134:86–91.

    Article  CAS  PubMed  Google Scholar 

  63. Buman MP, Winkler EA, Kurka JM, et al. Reallocating time to sleep, sedentary behaviors, or active behaviors: associations with cardiovascular disease risk biomarkers, NHANES 2005–2006. Am J Epidemiol. 2014;179:323–34.

    Article  PubMed  Google Scholar 

  64. Leproult R, Van Cauter E. Role of sleep and sleep loss in hormonal release and metabolism. Endocr Dev. 2010;17:11–21.

    Article  CAS  PubMed  Google Scholar 

  65. Sadeh A, Sharkey KM, Carskadon MA. Activity-based sleep-wake identification: an empirical test of methodological issues. Sleep. 1994;17(3):201–7.

    CAS  PubMed  Google Scholar 

  66. Cole RJ, Kripke DF, Gruen W, Mullaney DJ, Gillin JC. Automatic sleep/wake identification from wrist activity. Sleep. 1992;15(5):461–9.

    CAS  PubMed  Google Scholar 

  67. Galland B, Meredith-Jones K, Terrill P, Taylor R. Challenges and emerging technologies within the field of pediatric actigraphy. Front Psychiatry. 2014;5:99.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Meltzer LJ, Montgomery-Downs HE, Insana SP, Walsh CM. Use of actigraphy for assessment in pediatric sleep research. Sleep Med Rev. 2012;16:463–75.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sadeh A. The role and validity of actigraphy in sleep medicine: an update. Sleep Med Rev. 2011;15:259–67.

    Article  PubMed  Google Scholar 

  70. Girschik J, Fritschi L, Heyworth J, Waters F. Validation of self-reported sleep against actigraphy. J Epidemiol. 2012;22:462–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mekary RA, Willett WC, Hu FB, et al. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am J Epidemiol. 2009;170:519–27.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Panagiotakos DB, Pitsavos C, Polychronopoulos E, et al. Can a Mediterranean diet moderate the development and clinical progression of coronary heart disease? A systematic review. Med Sci Monit. 2004;10:RA193–8.

    PubMed  Google Scholar 

  73. Marshall SJ, Biddle SJH, Sallis JF, et al. Clustering of sedentary behaviors and physical activity among youth: a cross-sectional study. Pediatr Exerc Sci. 2002;14:401–17.

    Google Scholar 

  74. Ferrar K, Chang C, Li M, Olds TS. Adolescent time use clusters: a systematic review. J Adolesc Health. 2013;52:259–70.

    Article  PubMed  Google Scholar 

  75. Stone MR, Faulkner GE. Outdoor play in children: associations with objectively-measured physical activity, sedentary behavior and weight status. Prev Med. 2014;65:122–7.

    Article  PubMed  Google Scholar 

  76. Owens J, Adolescent Sleep Working Group and Committee on Adolescence. Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics. 2014;134:921–32.

    Article  Google Scholar 

  77. Schmid SM, Hallschmid M, Schultes B. The metabolic burden of sleep loss. Lancet Diabetes Endocrinol. 2015;3:52–62.

    Article  CAS  PubMed  Google Scholar 

  78. Chaput JP, Tremblay A. Insufficient sleep as a contributor to weight gain: an update. Curr Obes Rep. 2012;1:245–56.

    Article  Google Scholar 

  79. Tremblay MS, Haskell WL. From science to physical activity guidelines. In: Bouchard C, Blair SN, Haskell WL, editors. Physical activity and health. 2nd ed. Champaign, IL: Human Kinetics; 2012. p. 359–78.

    Google Scholar 

  80. Clemes SA, Biddle SJ. The use of pedometers for monitoring physical activity in children and adolescents: measurement considerations. J Phys Act Health. 2013;10(2):249–62.

    PubMed  Google Scholar 

  81. Grant PM, Ryan CG, Tigbe WW, Granat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50.

    PubMed  Google Scholar 

  83. Pedisic Z, Bauman A. Accelerometer-based measures in physical activity surveillance: current practice and issues. Br J Sports Med. 2015;49:219–23.

    Article  PubMed  Google Scholar 

  84. Watson KB, Carlson SD, Carroll DD, Fulton JE. Comparison of accelerometer cut points to estimate physical activity in US adults. J Sports Sci. 2014;32(7):660–9.

    Article  PubMed  Google Scholar 

  85. Loprinzi PD, Cardinal BJ, Crespo CJ, et al. Differences in demographic, behavioral, and biological variables between those with valid and invalid accelerometry data: implications for generalizability. J Phys Act Health. 2013;10:79–84.

    Article  PubMed  Google Scholar 

  86. Loprinzi PD, Smit E, Cardinal BJ, et al. Valid and invalid accelerometry data among children and adolescents: comparison across demographic, behavioral, and biological variables. Am J Health Promo. 2014;28:155–8.

    Article  Google Scholar 

  87. Roth MA, Mindell JS. Who provides accelerometry data? Correlates of adherence to wearing an accelerometry motion sensor: the 2008 health survey for England. J Phys Act Health. 2013;10:70–8.

    PubMed  Google Scholar 

  88. Katzmarzyk PT, Barreira TV, Broyles ST, et al. The international study of childhood obesity, lifestyle and the environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Tudor-Locke C, Barreira TV, Schuna Jr JM, et al. Improving wear time compliance with a 24-hour waist-worn accelerometer protocol in the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE). Int J Behav Nutr Phys Act. 2015;12:11.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Larouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Larouche, R., Chaput, JP., Tremblay, M.S. (2016). New Information on Population Activity Patterns Revealed by Objective Monitoring. In: Shephard, R., Tudor-Locke, C. (eds) The Objective Monitoring of Physical Activity: Contributions of Accelerometry to Epidemiology, Exercise Science and Rehabilitation. Springer Series on Epidemiology and Public Health. Springer, Cham. https://doi.org/10.1007/978-3-319-29577-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29577-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29575-6

  • Online ISBN: 978-3-319-29577-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics