Skip to main content

Influence of Weightlessness on Aerobic Capacity, Cardiac Output and Oxygen Uptake Kinetics

  • Chapter
  • First Online:
Exercise in Space

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 784 Accesses

Abstract

The exposure to weightlessness can have an impact on aerobic capacity as a result of changes in the cardiorespiratory and musculoskeletal systems. As a consequence, astronauts’ work capacities might be changed which would affect activities during the Space missions and after return to Earth or other environments with gravity, i.e. Mars or Moon. This chapter will give an overview about results from studies using cardiopulmonary exercise testing (CPET). This method allows to monitor astronauts’ fitness non-invasively and is, therefore, qualified for inflight measurements. Results from early Space flight until now will be compared with results from bedrest studies. Predominantly, the focus lies on peak oxygen uptake, heart rate and oxygen uptake kinetics. Since the specific methods and problems of CPET are related to the concepts of respiratory gas measurement, aspects of hardware, exercise protocols and data analysis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albouaini K, Egred M, Alahmar A, Wright DJ (2007) Cardiopulmonary exercise testing and its application. Heart 93:1285–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barstow TJ, Molé PA (1987) Simulation of pulmonary O2 uptake during exercise. J Appl Physiol 63:2253–2261

    CAS  PubMed  Google Scholar 

  • Barstow TJ, Scheuermann BW (2005) V’O2 kinetics: effects of maturation and ageing. In: Jones AM, Poole DC (eds) Oxygen uptake kinetics in sport, exercise and medicine. Routledge, Abingdon

    Google Scholar 

  • Barstow TJ, Lamarra N, Whipp BJ (1990) Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise. J Appl Physiol 68:979–989

    Article  CAS  PubMed  Google Scholar 

  • Barstow TJ, Buchthal S, Zanconato S, Cooper DM (1994) Muscle energetics and pulmonary oxygen uptake kinetics during moderate exercise. J Appl Physiol 77:1742–1749

    CAS  PubMed  Google Scholar 

  • Beaver WL, Wasserman K, Whipp BJ (1986) A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60:2020–2027

    CAS  PubMed  Google Scholar 

  • Beaver WL, Lamarra N, Wasserman K (1981) Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol 51:1662–1675

    CAS  PubMed  Google Scholar 

  • Burnley M, Jones AM (2007) Oxygen uptake kinetics as a determinant of sports performance. Eur J Sport Sci 7:63–79

    Article  Google Scholar 

  • Casaburi R, Whipp BJ, Wasserman K, Beaver WL, Koyal SN (1977) Ventilatory and gas exchange dynamics in response to sinusoidal work. J Appl Physiol Repir Environ Exerc Physiol 42:300–311

    CAS  Google Scholar 

  • Chi MM, Hintz CS, Coyle EF, Martin WH, Ivy JL, Nemeth PM, Holloszy JO, Lowry OH (1983) Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. Am J Physiol-Cell Physiol 244:C276–C287

    CAS  Google Scholar 

  • Clemensen P, Christensen P, Norsk P, Gronlund J (1994) A modified photo- and magnetoacoustic multigas analyzer applied in gas exchange measurements. J Appl Physiol 76:2832–2839

    CAS  PubMed  Google Scholar 

  • Convertino VA (1997) Cardiovascular consequences of bed rest: effect on maximal oxygen uptake. Med Sci Sports Exerc 29:191–196

    Article  CAS  PubMed  Google Scholar 

  • Convertino VA, Goldwater DJ, Sandler H (1984) VO2 kinetics of constant-load exercise following bed-rest-induced deconditioning. J Appl Physiol Respir Environ Exerc Physiol 57:1545–1550

    CAS  PubMed  Google Scholar 

  • Convertino V, Hung J, Goldwater D, DeBusk RF (1982) Cardiovascular responses to exercise in middle-aged men after 10 days of bedrest. Circulation 65:134–140

    Article  CAS  PubMed  Google Scholar 

  • Cooke WH, Ames JE IV, Crossman AA, Cox JF, Kuusela TA, Tahvanainen KUO, Moon LB, Drescher J, Baisch FJ, Mano T, Levine BD, Blomqvist CG, Eckberg DL (2000) Nine months in space: effects on human autonomic cardiovascular regulation. J Appl Physiol 89:1039–1045

    CAS  PubMed  Google Scholar 

  • Eßfeld D, Hoffmann U, Stegemann J (1987) V′O2 kinetics in subjects differing in aerobic capacity: investigation by spectral analysis. Eur J Appl Physiol 56:508–515

    Article  Google Scholar 

  • Eßfeld D, Hoffmann U, Stegemann J (1991) A model for studying the distortion of muscle oxygen uptake patterns by circulation parameters. Eur J Appl Physiol 62:83–90

    Article  Google Scholar 

  • Eßfeld D, Baum K, Hoffmann U, Stegemann J (1993) Effects of microgravity on interstitial muscle receptors affecting heart rate and blood pressure during static exercise. Clin Investig 71:704–709

    Article  PubMed  Google Scholar 

  • Ferretti G, Antonutto G, Denis C, Hoppeler H, Minetti AE, Narici MV, Desplanches D (1997) The interplay of central and peripheral factors in limiting maximal O2 consumption in man after prolonged bed rest. J Physiol 501:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fortney SM, Hyatt KH, Davis JE, Vogel JM (1991) Changes in body fluid compartments during a 28-day bed rest. Aviat Space Environ Med 62:97–104

    CAS  PubMed  Google Scholar 

  • Gaesser GA, Brooks GA (1975) Muscular efficiency during steady-state exercise: effects of speed and work rate. J Appl Physiol 89:1132–1138

    Google Scholar 

  • Grassi B (2006) Oxygen uptake kinetics: why are they so slow? And what do they tell us? J Physiol Pharmacol 57(Suppl 10):53–65

    PubMed  Google Scholar 

  • Greenleaf JE (1984) Physiological responses to prolonged bed rest and fluid immersion in humans. J Appl Physiol 57:619–633

    CAS  PubMed  Google Scholar 

  • Hoffmann U, Drescher U, Benson AP, Rossiter HB, Essfeld D (2013) Skeletal muscle V′O2 kinetics from cardiopulmonary measurements: assessing distortions through O2 transport by means of stochastic work-rate signals and circulatory modelling. Eur J Appl Physiol 113:1745–1754

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann U, Moore AD, Koschate J, Drescher U (2016) V′O and HR kinetics before and after international space station missions. Eur J Appl Physiol 116:503–511

    Article  CAS  PubMed  Google Scholar 

  • Hughson RL (2009) Oxygen uptake kinetics: historical perspective and future directions. Appl Physiol Nutr Metabol 34:840–850

    Article  CAS  Google Scholar 

  • Hughson RL, Inman MD (1986) Oxygen uptake kinetics from ramp work tests: variability of single test values. J Appl Physiol 61:373–376

    CAS  PubMed  Google Scholar 

  • Klausen K, Andersen LB, Pelle I (1981) Adaptive changes in work capacity, skeletal muscle capillarization and enzyme levels during training and detraining. Acta Physiol Scand 113:9–16

    Article  CAS  PubMed  Google Scholar 

  • Lakomy HKA (1987) The use of a non-motorized treadmill for analysing sprint performance. Ergonomics 30:627–637

    Article  Google Scholar 

  • Lamarra N, Whipp BJ, Ward SA, Wasserman K (1987) Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol 62:2003–2012

    Article  CAS  PubMed  Google Scholar 

  • Levine BD, Lane LD, Watenpaugh D, Gaffney F, Buckey JC, Blomqvist CG (1996) Maximal exercise performance after adaptation to microgravity. J Appl Physiol 81:686–694

    CAS  PubMed  Google Scholar 

  • Leyk D, Eßfeld D, Hoffmann U, Wunderlich HG, Baum K, Stegemann J (1994) Postural effect on cardiac output, oxygen uptake and lactate during cycle exercise of varying intensity. Eur J Appl Physiol 68:30–35

    Article  CAS  Google Scholar 

  • Linnarsson D (1974) Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl 415:1–68

    CAS  PubMed  Google Scholar 

  • McCreary CR, Chilibeck PD, Marsh GD, Paterson D, Cunningham DA, Thompson RT (1996) Kinetics of pulmonary oxygen uptake and muscle phosphates during moderate-intensity calf exercise. J Appl Physiol 81:1331–1338

    CAS  PubMed  Google Scholar 

  • Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD (1977) Results of Skylab experiment M171 – metabolic activity. In: Johnson RS, Dietlein LF (eds) Biomedical results from Skylab, NASASP-377. National Aeronautics and Space Administration, Washington, DC, pp 372–387

    Google Scholar 

  • Midgley AW, McNaughton LR, Polman R, Marchant D (2007) Criteria for determination of maximal oxygen uptake. Sports Med 37:1019–1028

    Article  PubMed  Google Scholar 

  • Moore AD, Lee SM, Greenisen MC, Bishop P (1997) Validity of a heart rate monitor during work in the laboratory and on the space shuttle. Am Ind Hyg Assoc J 58:299–301

    Article  PubMed  Google Scholar 

  • Moore AD, Lee SMC, Stenger MB, Platts SH (2010) Cardiovascular exercise in the U.S. space program: past, present, and future. Acta Astonaut 66:974–988

    Article  CAS  Google Scholar 

  • Moore AD, Downs ME, Lee SMC, Feiveson AH, Knudsen P, Ploutz-Snyder L (2014) Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol 117:231–238

    Article  PubMed  Google Scholar 

  • Mujika I, Padilla S (2001) Cardiorespiratory and metabolic characteristics of detraining in humans. Med Sci Sports Exerc 33:413–421

    Article  CAS  PubMed  Google Scholar 

  • Norsk P, Stadeager C, Johansen LB, Warberg J, Bie P, Foldager N, Christensen NJ (1993) Volume-homeostatic mechanisms in humans during a 12-h posture change. J Appl Physiol 75:349–356

    CAS  PubMed  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  CAS  PubMed  Google Scholar 

  • Perhonen MA, Franco F, Lane LD, Buckey JC, Blomqvist CG, Zerwekh JE, Peshocl RM, Weatherall PT, Levine BD (2001) Cardiac atrophy after bed rest and spaceflight. J Appl Physiol 91:645–653

    CAS  PubMed  Google Scholar 

  • Stegemann J, Essfeld D, Hoffmann U (1985) Effects of a 7 day head-down Tilt (−6°) on the dynamics of oxygen uptake and heart rate adjustment in upright exercise. Aviat Space Environ Med 56:410–414

    CAS  PubMed  Google Scholar 

  • Stegemann J, Hoffmann U, Erdmann R, Eßfeld D (1997) Exercise capacity during and after spaceflight. Aviat Space Environ Med 68:812–817

    CAS  PubMed  Google Scholar 

  • Too D (1990) Biomechanics of cycling and factors affecting performance. Sports Med 10:286–302

    Article  CAS  PubMed  Google Scholar 

  • Trappe T, Trappe S, Lee G, Widrick J, Fitts R, Costill D (2005) Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J Appl Physiol 100:951–957

    Article  PubMed  Google Scholar 

  • Tuday EC, Meck JV, Nyhan D, Shoukas AA, Berkowitz DE (2007) Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance. J Appl Physiol 102:853–858

    Article  PubMed  Google Scholar 

  • Wagner PD (1995) Muscle O2 transport and O2 dependent control of metabolism. Med Sci Sports Exerc 27:47–53

    Article  CAS  PubMed  Google Scholar 

  • Wasserman K, Hansen JE, Sue DY, Whipp BJ, Casaburi R (1999) Principles of exercise testing and interpretation: including pathophysiology and clinical applications, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

Related but not Cited

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants. Med Sci Sports Exer 32:70–84

    Article  Google Scholar 

  • Capelli C, Antonutto G, Kenfack MA, Cautero M, Lador F, Moia C (2006) Factors determining the time course of V’O2max decay during bedrest: implications for V’O2max limitation. Eur J Appl Physiol 98:152–160

    Article  CAS  PubMed  Google Scholar 

  • Cochrane JE, Hughson RL (1992) Computer simulation of O2 transport and utilization mechanisms at the onset of exercise. J Appl Physiol 73:2382–2388

    CAS  PubMed  Google Scholar 

  • Convertino VA, Keil LC, Bernauer EM, Greenleaf JE (1981) Plasma volume, osmolality, vasopressin, and renin activity during graded exercise in man. J Appl Physiol 50:123–128

    PubMed  Google Scholar 

  • DeLorey SD, Kowalchuk JM, Paterson DH (2004) Effects of prior heavy-intensity exercise on pulmonary O2 uptake and muscle deoxygenation kinetics in young and older adult humans. J Appl Physiol 97:998–1005

    Article  PubMed  Google Scholar 

  • DeLorey DS, Paterson DH, Kowalchuk JM (2007) Effects of ageing on muscle O2 utilization and muscle oxygenation during the transition to moderate-intensity exercise. Appl Physiol Nutr Metab 32:1251–1262

    Article  PubMed  Google Scholar 

  • Di Prampero PE, Davies DTM, Crretelli P, Margaria R (1970) An analysis of O2 debt contracted in submaximal exercise. J Appl Physiol 29:547–551

    PubMed  Google Scholar 

  • Drescher U, Koschate J, Hoffmann U (2015) Oxygen uptake and heart rate kinetics during dynamic upper and lower body exercise: an investigation by time-series analysis. Eur J Appl Physiol 115:1665–1672. doi:10.1007/s00421-015-3146-4

    Article  CAS  PubMed  Google Scholar 

  • Hughson RL, Sherrill DL, Swanson GD (1988) Kinetics of VO2 with impulse and step exercise in humans. J Appl Physiol 64:451–459

    CAS  PubMed  Google Scholar 

  • Inman MD, Hughson RL, Weisiger KH, Swanson GD (1987) Estimate of mean tissue O2 consumption at onset of exercise in males. J Appl Physiol 63:1578–1585

    CAS  PubMed  Google Scholar 

  • Lee SMC, Williams WJ, Schneider SM (2002) Role of skin blood flow and sweating rate in exercise thermoregulation after bed rest. J Appl Physiol 92:2026–2034

    Article  PubMed  Google Scholar 

  • Lee SM, Moore AD, Everett ME, Stenger MB, Platts SH (2010) Aerobic exercise deconditioning and countermeasures during bed rest. Aviat Space Environ Med 81:52–63

    Article  PubMed  Google Scholar 

  • Moore AD Jr, Lee SM, Charles JB, Greenisen MC, Schneider SM (2001) Maximal exercise as a countermeasure to orthostatic intolerance after spaceflight. Med Sci Sports Exerc 33:75–80

    Article  PubMed  Google Scholar 

  • Petrini MF, Peterson BT, Hyde RW (1978) Lung tissue volume and blood flow by rebreathing theory. J Appl Physiol 44:795–802

    CAS  PubMed  Google Scholar 

  • Richardson RS, Noyszewski EA, Kendrick KF, Leigh JS, Wagner PD (1995) Myoglobin O2 desaturation during exercise – evidence of limited O2 transport. J Clin Invest 96:1916–1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossiter HB, Ward SA, Doyle VL, Howe FA, Griffiths JR, Whipp BJ (1999) Inferences from pulmonary O2 uptake with respect to intramuscular [phosphocreatine] kinetics during moderate exercise in humans. J Physiol 518:921–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trappe S, Costill D, Gallagher P, Creer A, Peters JR, Evans H, Riley DA, Fitts RH (2009) Exercise in space: human skeletal muscle after 6 months aboard the international space station. J App Physiol 106:1159–1168

    Article  Google Scholar 

  • Tschakovsky ME, Hughson RL (1999) Interaction of factors determining oxygen uptake at the onset of exercise. J Appl Physiol 86:1101–1113

    CAS  PubMed  Google Scholar 

  • Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K (1982) Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol 52:1506–1513

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Hoffmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Hoffmann, U., Moore, A.D., Koschate, J., Drescher, U. (2016). Influence of Weightlessness on Aerobic Capacity, Cardiac Output and Oxygen Uptake Kinetics. In: Schneider, S. (eds) Exercise in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-29571-8_3

Download citation

Publish with us

Policies and ethics