Skip to main content

Adaptation of Cartilage to Immobilization

  • Chapter
  • First Online:
Exercise in Space

Part of the book series: SpringerBriefs in Space Life Sciences ((BRIEFSSLS))

  • 770 Accesses

Abstract

Articular cartilage is essential for unconfined function of the musculoskeletal system. The effects of immobilization on hyaline cartilage have been investigated for many decades in cell and animal models, and it is known that normal mechanical loading, as experienced in daily life, is essential for cartilage health. Because of the slow rate of metabolism of cartilage, the time line for intervention experiments needs to be longer than for other skeletal tissues and the regenerative capacity of the cartilage is very limited, once degradation occurs. Thus, performing unloading experiments in healthy humans is difficult. A few studies have been performed in patient cohorts that experienced unloading due to injury, and the results suggest that human cartilage health is negatively affected by unloading.

Space flight research offers a unique opportunity to investigate musculoskeletal tissue adaptation to immobilization in either bed rest or Space flight experiments. Data on cartilage health are sparse but suggest that it is necessary to assess the risk of cartilage deconditioning during extensive human Space travel. Results from this context offer the unique possibility to broaden our understanding of the role of mechanical loading for tissue health.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya C, Yik JH, Kishore A, Van Dinh V, Di Cesare PE, Haudenschild DR (2014) Cartilage oligomeric matrix protein and its binding partners in the cartilage extracellular matrix: interaction, regulation and role in chondrogenesis. Matrix Biol 37:102–111. doi:10.1016/j.matbio.2014.06.001

    Article  CAS  PubMed  Google Scholar 

  • Aleshcheva G, Sahana J, Ma X, Hauslage J, Hemmersbach R, Egli M, Infanger M, Bauer J, Grimm D (2013) Changes in morphology, gene expression and protein content in chondrocytes cultured on a random positioning machine. PLoS One 8(11):e79057. doi:10.1371/journal.pone.0079057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson ML, Thorstensson CA, Roos EM, Petersson IF, Heinegard D, Saxne T (2006) Serum levels of cartilage oligomeric matrix protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis. BMC Musculoskelet Disord 7:98. doi:10.1186/1471-2474-7-98

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andriacchi TP, Natarajan RN, Hurwitz DE (1997) Musculoskeletal dynamics, locomotion, and clinical applications. In: Mow VCH, Hayes WC (eds) Basic orthopaedic biomechanics, 2nd edn. Lippincott-Raven, Philadelphia, pp 31–68

    Google Scholar 

  • Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457

    Article  PubMed  Google Scholar 

  • Bachrach NM, Valhmu WB, Stazzone E, Ratcliffe A, Lai WM, Mow C (1995) Changes in proteoglycan synthesis of chondrocytes in articular cartilage are associated with the time-dependent changes in their mechanical environment. J Biomech 28(12):1561–1569. doi:10.1016/0021-9290(95)00103-4

    Article  CAS  PubMed  Google Scholar 

  • Bansal PN, Joshi NS, Entezari V, Grinstaff MW, Snyder BD (2010) Contrast enhanced computed tomography can predict the glycosaminoglycan content and biomechanical properties of articular cartilage. Osteoarthritis Cartilage 18(2):184–191. doi:10.1016/j.joca.2009.09.003

    Article  CAS  PubMed  Google Scholar 

  • Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan in articular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205(2):551–558. doi:10.1148/radiology.205.2.9356644

    Article  CAS  PubMed  Google Scholar 

  • Bauer DC, Hunter DJ, Abramson SB, Attur M, Corr M, Felson D, Heinegard D, Jordan JM, Kepler TB, Lane NE, Saxne T, Tyree B, Kraus VB (2006) Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 14(8):723–727. doi:10.1016/j.joca.2006.04.001

    Article  CAS  PubMed  Google Scholar 

  • Bedson J, Jordan K, Croft P (2005) The prevalence and history of knee osteoarthritis in general practice: a case-control study. Fam Pract 22(1):103–108. doi:10.1093/fampra/cmh700

    Article  PubMed  Google Scholar 

  • Behrens F, Kraft EL, Oegema TR Jr (1989) Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res 7(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Belavy DL, Armbrecht G, Felsenberg D (2012a) Evaluation of lumbar disc and spine morphology: long-term repeatability and comparison of methods. Physiol Meas 33(8):1313–1321. doi:10.1088/0967-3334/33/8/1313

    Article  CAS  PubMed  Google Scholar 

  • Belavy DL, Armbrecht G, Felsenberg D (2012b) Incomplete recovery of lumbar intervertebral discs 2 years after 60-day bed rest. Spine (Phila Pa 1976) 37(14):1245–1251. doi:10.1097/BRS.0b013e3182354d84

    Article  Google Scholar 

  • Biomarkers Definitions Working Group (2001) Biomarkers and surrogate endpoints, preferred definitions and conceptual framework. Clin Pharmacol Ther 69(3):89–95. doi:10.1067/mcp.2001.113989

    Article  Google Scholar 

  • Briegleb W (1992) Some qualitative and quantitative aspects of the fast-rotating clinostat as a research tool. ASGSB Bull 5(2):23–30

    CAS  PubMed  Google Scholar 

  • Buckwalter JA (2003) Sports, joint injury, and posttraumatic osteoarthritis. J Orthop Sports Phys Ther 33(10):578–588. doi:10.2519/jospt.2003.33.10.578

    Article  PubMed  Google Scholar 

  • Buckwalter JA, Martin JA (2004) Sports and osteoarthritis. Curr Opin Rheumatol 16(5):634–639

    Article  PubMed  Google Scholar 

  • Bullough PG (2004) The role of joint architecture in the etiology of arthritis. Osteoarthritis Cartilage 12(Suppl A):S2–9

    Article  PubMed  Google Scholar 

  • Burstein D, Velyvis J, Scott KT, Stock KW, Kim YJ, Jaramillo D, Boutin RD, Gray ML (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Burstein D, Gray M, Mosher T, Dardzinski B (2009) Measures of molecular composition and structure in osteoarthritis. Radiol Clin North Am 47(4):675–686. doi:10.1016/j.rcl.2009.04.003

    Article  PubMed  Google Scholar 

  • Carter DR, Beaupre GS (2001) Skeletal function and form – mechanobiology of skeletal development, aging, and regeneration, vol 1. Cambridge University Press, Cambridge

    Google Scholar 

  • Carter DR, Wong M (1988a) Mechanical stresses and endochondral ossification in the chondroepiphysis. J Orthop Res 6(1):148–154

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Wong M (1988b) The role of mechanical loading histories in the development of diarthrodial joints. J Orthop Res 6(6):804–816

    Article  CAS  PubMed  Google Scholar 

  • Carter DR, Wong M (2003) Modelling cartilage mechanobiology. Philos Trans R Soc Lond B Biol Sci 358(1437):1461–1471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carter DR, Beaupre GS, Wong M, Smith RL, Andriacchi TP, Schurman DJ (2004) The mechanobiology of articular cartilage development and degeneration. Clin Orthop Relat Res 427:S69–S77

    Article  PubMed  Google Scholar 

  • Cogoli A, Tschopp A, Fuchs-Bislin P (1984) Cell sensitivity to gravity. Science 225(4658):228–230

    Article  CAS  PubMed  Google Scholar 

  • Dahlberg L, Roos H, Saxne T, Heinegard D, Lark MW, Hoerrner LA, Lohmander LS (1994) Cartilage metabolism in the injured and uninjured knee of the same patient. Ann Rheum Dis 53(12):823–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davisson T, Kunig S, Chen A, Sah R, Ratcliffe A (2002) Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J Orthop Res 20(4):842–848. doi:10.1016/S0736-0266(01)00160-7

    Article  CAS  PubMed  Google Scholar 

  • De Ceuninck F, Sabatini M, Pastoureau P (2011) Recent progress toward biomarker identification in osteoarthritis. Drug Discov Today 16(9–10):443–449. doi:10.1016/j.drudis.2011.01.004

    Article  PubMed  CAS  Google Scholar 

  • Eckstein F (2004) Noninvasive study of human cartilage structure by MRI. Methods Mol Med 101:191–217. doi:10.1385/1-59259-821-8:191

    PubMed  Google Scholar 

  • Eckstein F, Faber S, Muhlbauer R, Hohe J, Englmeier KH, Reiser M, Putz R (2002a) Functional adaptation of human joints to mechanical stimuli. Osteoarthritis Cartilage 10(1):44–50

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Muller S, Faber SC, Englmeier KH, Reiser M, Putz R (2002b) Side differences of knee joint cartilage volume, thickness, and surface area, and correlation with lower limb dominance—an MRI-based study. Osteoarthritis Cartilage 10(12):914–921

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F, Charles HC, Buck RJ, Kraus VB, Remmers AE, Hudelmaier M, Wirth W, Evelhoch JL (2005a) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 52(10):3132–3136. doi:10.1002/art.21348

    Article  PubMed  Google Scholar 

  • Eckstein F, Lemberger B, Gratzke C, Hudelmaier M, Glaser C, Englmeier KH, Reiser M (2005b) In vivo cartilage deformation after different types of activity and its dependence on physical training status. Ann Rheum Dis 64(2):291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein F, Cicuttini F, Raynauld JP, Waterton JC, Peterfy C (2006) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14(Suppl A):A46–75. doi:10.1016/j.joca.2006.02.026

    Article  PubMed  Google Scholar 

  • Eckstein F, Hudelmaier M, Cahue S, Marshall M, Sharma L (2009) Medial-to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment and mechanical load. Calcif Tissue Int 84(3):186–194. doi:10.1007/s00223-008-9208-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhart-Hledik JC, Favre J, Asay JL, Smith RL, Giori NJ, Mundermann A, Andriacchi TP (2012) A relationship between mechanically-induced changes in serum cartilage oligomeric matrix protein (COMP) and changes in cartilage thickness after 5 years. Osteoarthritis Cartilage 20(11):1309–1315. doi:10.1016/j.joca.2012.07.018

    Article  CAS  PubMed  Google Scholar 

  • Evans EB, Eggers GWN, Butler JK, Blumel J (1960) Experimental immobilization and remobilization of rat knee joints. J Bone Joint Surg Am 42:737–758

    Google Scholar 

  • Farquhar T, Xia Y, Mann K, Bertram J, Burton-Wurster N, Jelinski L, Lust G (1996) Swelling and fibronectin accumulation in articular cartilage explants after cyclical impact. J Orthop Res 14(3):417–423. doi:10.1002/jor.1100140312

    Article  CAS  PubMed  Google Scholar 

  • Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, Sowers M, McAlindon T, Spector TD, Poole AR, Yanovski SZ, Ateshian G, Sharma L, Buckwalter JA, Brandt KD, Fries JF (2000) Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 133(8):635–646

    Article  CAS  PubMed  Google Scholar 

  • Freed LE, Langer R, Martin I, Pellis NR, Vunjak-Novakovic G (1997) Tissue engineering of cartilage in space. Proc Natl Acad Sci USA 94(25):13885–13890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freeman MA, Pinskerova V (2005) The movement of the normal tibio-femoral joint. J Biomech 38(2):197–208. doi:10.1016/j.jbiomech.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  • Giannoni P, Siegrist M, Hunziker EB, Wong M (2003) The mechanosensitivity of cartilage oligomeric matrix protein (COMP). Biorheology 40(1–3):101–109

    CAS  PubMed  Google Scholar 

  • Griffin TM, Guilak F (2005) The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 33(4):195–200

    Article  PubMed  Google Scholar 

  • Grimm D, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Ulbrich C, Magnusson NE, Infanger M, Bauer J (2014) Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng Part B Rev 20(6):555–566. doi:10.1089/ten.TEB.2013.0704

    Article  PubMed  PubMed Central  Google Scholar 

  • Haapala J, Arokoski JP, Hyttinen MM, Lammi M, Tammi M, Kovanen V, Helminen HJ, Kiviranta I (1999) Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res 362:218–229

    PubMed  Google Scholar 

  • Haapala J, Arokoski J, Pirttimaki J, Lyyra T, Jurvelin J, Tammi M, Helminen HJ, Kiviranta I (2000) Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med 21(1):76–81

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara Y, Ando A, Chimoto E, Saijo Y, Ohmori-Matsuda K, Itoi E (2009) Changes of articular cartilage after immobilization in a rat knee contracture model. J Orthop Res 27(2):236–242. doi:10.1002/jor.20724

    Article  PubMed  Google Scholar 

  • Halasz K, Kassner A, Morgelin M, Heinegard D (2007) COMP acts as a catalyst in collagen fibrillogenesis. J Biol Chem 282(43):31166–31173. doi:10.1074/jbc.M705735200

    Article  CAS  PubMed  Google Scholar 

  • Hamann N, Zaucke F, Heilig J, Oberlander KD, Brüggemann GP, Niehoff A (2012) Effect of different running modes on the morphological, biochemical, and mechanical properties of articular cartilage. Scand J Med Sci Sports 24(1):179–188. doi:10.1111/j.1600-0838.2012.01513.x

    Article  PubMed  Google Scholar 

  • Hamann N, Zaucke F, Dayakli M, Bruggemann GP, Niehoff A (2013) Growth-related structural, biochemical, and mechanical properties of the functional bone-cartilage unit. J Anat 222(2):248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedbom E, Antonsson P, Hjerpe A, Aeschlimann D, Paulsson M, Rosa-Pimentel E, Sommarin Y, Wendel M, Oldberg A, Heinegard D (1992) Cartilage matrix proteins. An acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267(9):6132–6136

    CAS  PubMed  Google Scholar 

  • Heinegard D (2009) Proteoglycans and more—from molecules to biology. Int J Exp Pathol 90(6):575–586. doi:10.1111/j.1365-2613.2009.00695.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herzog W, Federico S (2007) Articular cartilage. In: Nigg BM, Herzog W (eds) Biomechanics of the musculo-skeletal system, 3rd edn. Wiley, West Sussex, pp 95–109

    Google Scholar 

  • Hinterwimmer S, Krammer M, Krotz M, Glaser C, Baumgart R, Reiser M, Eckstein F (2004) Cartilage atrophy in the knees of patients after seven weeks of partial load bearing. Arthritis Rheum 50(8):2516–2520

    Article  CAS  PubMed  Google Scholar 

  • Hoson T, Kamisaka S, Masuda Y, Yamashita M, Buchen B (1997) Evaluation of the three-dimensional clinostat as a simulator of weightlessness. Planta 203:S187–S197

    Article  CAS  PubMed  Google Scholar 

  • Hsu SH, Kuo CC, Yen HJ, Whu SW, Tsai CL (2005) The effect of two different bioreactors on the neocartilage formation in type II collagen modified polyester scaffolds seeded with chondrocytes. Artif Organs 29(6):467–474. doi:10.1111/j.1525-1594.2005.29080.x

    Article  CAS  PubMed  Google Scholar 

  • Hudelmaier M, Glaser C, Hausschild A, Burgkart R, Eckstein F (2006) Effects of joint unloading and reloading on human cartilage morphology and function, muscle cross-sectional areas, and bone density – a quantitative case report. J Musculoskelet Neuronal Interact 6(3):284–290

    CAS  PubMed  Google Scholar 

  • Hung CT, Mow VC (2012) Biomechanics of articular cartilage. In: Nordin M, Frankel VH (eds) Basic biomechanics of the musculoskeletal system, 4th edn. Lippincott Williams & Wilkins/A Wolters Kluwer Business, Philadelphia, pp 60–101

    Google Scholar 

  • Hunter DJ, Altman RD, Cicuttini F, Crema MD, Duryea J, Eckstein F, Guermazi A, Kijowski R, Link TM, Martel-Pelletier J, Miller CG, Mosher TJ, Ochoa-Albiztegui RE, Pelletier JP, Peterfy C, Raynauld JP, Roemer FW, Totterman SM, Gold GE (2015) OARSI clinical trials recommendations: knee imaging in clinical trials in osteoarthritis. Osteoarthritis Cartilage 23(5):698–715. doi:10.1016/j.joca.2015.03.012

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey JE, Gregory DW, Aspden RM (1995) Matrix damage and chondrocyte viability following a single impact load on articular cartilage. Arch Biochem Biophys 322(1):87–96. doi:10.1006/abbi.1995.1439

    Article  CAS  PubMed  Google Scholar 

  • Johnson RB (1998) The bearable lightness of being: bones, muscles, and spaceflight. Anat Rec 253(1):24–27

    Article  CAS  PubMed  Google Scholar 

  • Johnson A, Smith R, Saxne T, Hickery M, Heinegard D (2004) Fibronectin fragments cause release and degradation of collagen-binding molecules from equine explant cultures. Osteoarthritis Cartilage 12(2):149–159

    Article  PubMed  Google Scholar 

  • Jordan JM (2005) Update on cartilage oligomeric matrix protein as a marker of osteoarthritis. J Rheumatol 32(6):1145–1147

    PubMed  Google Scholar 

  • Jurvelin J, Kiviranta I, Tammi M, Helminen JH (1986) Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop Relat Res 207:246–252

    PubMed  Google Scholar 

  • Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A, Breitel DA, Rattenbach R, Relaix F, Maire P, Rountree RB, Kingsley DM, Zelzer E (2009) Muscle contraction is necessary to maintain joint progenitor cell fate. Dev Cell 16(5):734–743. doi:10.1016/j.devcel.2009.04.013

    Article  CAS  PubMed  Google Scholar 

  • Kakurin LI, Lobachik VI, Mikhailov VM, Senkevich YA (1976) Antiorthostatic hypokinesia as a method of weightlessness simulation. Aviat Space Environ Med 47(10):1083–1086

    CAS  PubMed  Google Scholar 

  • Kim HJ, Lee YH, Kim CK (2007) Biomarkers of muscle and cartilage damage and inflammation during a 200 km run. Eur J Appl Physiol 99(4):443–447. doi:10.1007/s00421-006-0362-y

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Lee YH, Kim CK (2009) Changes in serum cartilage oligomeric matrix protein (COMP), plasma CPK and plasma hs-CRP in relation to running distance in a marathon (42.195 km) and an ultra-marathon (200 km) race. Eur J Appl Physiol 105(5):765–770. doi:10.1007/s00421-008-0961-x

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30(7):801–809

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta I, Tammi M, Jurvelin J, Saamanen AM, Helminen HJ (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6(2):188–195

    Article  CAS  PubMed  Google Scholar 

  • Kiviranta I, Tammi M, Jurvelin J, Arokoski J, Saamanen AM, Helminen HJ (1992) Articular cartilage thickness and glycosaminoglycan distribution in the canine knee joint after strenuous running exercise. Clin Orthop Relat Res 283:302–308

    PubMed  Google Scholar 

  • Klement BJ, Spooner BS (1999) Mineralization and growth of cultured embryonic skeletal tissue in microgravity. Bone 24(4):349–359

    Article  CAS  PubMed  Google Scholar 

  • Kraus VB, Nevitt M, Sandell LJ (2010) Summary of the OA biomarkers workshop 2009—biochemical biomarkers: biology, validation, and clinical studies. Osteoarthritis Cartilage 18(6):742–745. doi:10.1016/j.joca.2010.02.014

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc A, Schneider V, Shackelford L, West S, Oganov V, Bakulin A, Voronin L (2000) Bone mineral and lean tissue loss after long duration space flight. J Musculoskelet Neuronal Interact 1(2):157–160

    CAS  PubMed  Google Scholar 

  • Lelkes G (1958) Experiments in vitro on the role of movement in the development of joints. J Embryol Exp Morphol 6(2):183–186

    CAS  PubMed  Google Scholar 

  • Leong DJ, Gu XI, Li Y, Lee JY, Laudier DM, Majeska RJ, Schaffler MB, Cardoso L, Sun HB (2010) Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol 29(5):420–426. doi:10.1016/j.matbio.2010.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LeRoux MA, Cheung HS, Bau JL, Wang JY, Howell DS, Setton LA (2001) Altered mechanics and histomorphometry of canine tibial cartilage following joint immobilization. Osteoarthritis Cartilage 9(7):633–640

    Article  CAS  PubMed  Google Scholar 

  • Lindqvist E, Eberhardt K, Bendtzen K, Heinegard D, Saxne T (2005) Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann Rheum Dis 64(2):196–201. doi:10.1136/ard.2003.019992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liphardt AM, Mundermann A, Koo S, Backer N, Andriacchi TP, Zange J, Mester J, Heer M (2009) Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthritis Cartilage 17(12):1598–1603

    Article  PubMed  Google Scholar 

  • Liphardt AM, Brüggemann GP, Hamann N, Zaucke F, Eckstein F, Bloch W, Mündermann A, Koo S, Mester J, Niehoff A (2015) The effect of immobility and microgravity on cartilage metabolism. Ann Rheum Dis 74(Suppl 2):919

    Article  Google Scholar 

  • Mankin HJ, Mow VC, Buckwalter JA, Iannotti JP, Ratcliffe A (1999) Articular cartilage structure, composition, and function. In: Buckwalter JA, Einhorn TA, Simon SR (eds) Orthopedic basic science: biology and biomechanics of the musculoskeletal system. American Academy of Orthopaedic Surgeons, Rosemont, pp 440–470

    Google Scholar 

  • Mann HH, Ozbek S, Engel J, Paulsson M, Wagener R (2004) Interactions between the cartilage oligomeric matrix protein and matrilins. Implications for matrix assembly and the pathogenesis of chondrodysplasias. J Biol Chem 279(24):25294–25298

    Article  CAS  PubMed  Google Scholar 

  • Mansson B, Carey D, Alini M, Ionescu M, Rosenberg LC, Poole AR, Heinegard D, Saxne T (1995) Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 95(3):1071–1077. doi:10.1172/jci117753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260(5554):808–809

    Article  CAS  PubMed  Google Scholar 

  • Monfort J, Garcia-Giralt N, Lopez-Armada MJ, Monllau JC, Bonilla A, Benito P, Blanco FJ (2006) Decreased metalloproteinase production as a response to mechanical pressure in human cartilage: a mechanism for homeostatic regulation. Arthritis Res Ther 8(5):R149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Montufar-Solis D, Duke PJ (1999) Gravitational changes affect tibial growth plates according to Hert’s curve. Aviat Space Environ Med 70(3 Pt 1):245–249

    CAS  PubMed  Google Scholar 

  • Moriyama H, Yoshimura O, Kawamata S, Takayanagi K, Kurose T, Kubota A, Hosoda M, Tobimatsu Y (2008) Alteration in articular cartilage of rat knee joints after spinal cord injury. Osteoarthritis Cartilage 16(3):392–398. doi:10.1016/j.joca.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  • Morrison CJ, Butler GS, Rodriguez D, Overall CM (2009) Matrix metalloproteinase proteomics: substrates, targets, and therapy. Curr Opin Cell Biol 21(5):645–653

    Article  CAS  PubMed  Google Scholar 

  • Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8(4):355–368

    Article  PubMed  Google Scholar 

  • Moss ML, Moss-Salentijn L (1983) Vertebrate cartilages. In: Hall BK (ed) Cartilage – structure, function and biochemistry, vol 1. Academic, New York, pp 1–30

    Google Scholar 

  • Muhlbauer R, Lukasz TS, Faber TS, Stammberger T, Eckstein F (2000) Comparison of knee joint cartilage thickness in triathletes and physically inactive volunteers based on magnetic resonance imaging and three-dimensional analysis. Am J Sports Med 28(4):541–546

    CAS  PubMed  Google Scholar 

  • Mundermann A, Dyrby CO, Andriacchi TP, King KB (2005) Serum concentration of cartilage oligomeric matrix protein (COMP) is sensitive to physiological cyclic loading in healthy adults. Osteoarthritis Cartilage 13(1):34–38. doi:10.1016/j.joca.2004.09.007

    Article  PubMed  Google Scholar 

  • Mundermann A, King KB, Smith RL, Andriacchi TP (2009) Change in serum COMP concentration due to ambulatory load is not related to knee OA Status. J Orthop Res 27(11):1408–1413

    Article  CAS  PubMed  Google Scholar 

  • Murray PD, Drachman DB (1969) The role of movement in the development of joints and related structures: the head and neck in the chick embryo. J Embryol Exp Morphol 22(3):349–371

    CAS  PubMed  Google Scholar 

  • Neidhart M, Hauser N, Paulsson M, DiCesare PE, Michel BA, Hauselmann HJ (1997) Small fragments of cartilage oligomeric matrix protein in synovial fluid and serum as markers for cartilage degradation. Br J Rheumatol 36(11):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Neidhart M, Muller-Ladner U, Frey W, Bosserhoff AK, Colombani PC, Frey-Rindova P, Hummel KM, Gay RE, Hauselmann H, Gay S (2000) Increased serum levels of non-collagenous matrix proteins (cartilage oligomeric matrix protein and melanoma inhibitory activity) in marathon runners. Osteoarthritis Cartilage 8(3):222–229. doi:10.1053/joca.1999.0293

    Article  CAS  PubMed  Google Scholar 

  • Newman B, Wallis GA (2002) Is osteoarthritis a genetic disease? Clin Invest Med 25(4):139–149

    PubMed  Google Scholar 

  • Niehoff A, Offermann M, Dargel J, Schmidt A, Brüggemann GP, Bloch W (2008) Dynamic and static mechanical compression affects Akt phosphorylation in porcine patellofemoral joint cartilage. J Orthop Res 26(5):616–623. doi:10.1002/jor.20542

    Article  CAS  PubMed  Google Scholar 

  • Niehoff A, Kersting UG, Helling S, Dargel J, Maurer J, Thevis M, Bruggemann GP (2010) Different mechanical loading protocols influence serum cartilage oligomeric matrix protein levels in young healthy humans. Eur J Appl Physiol 110(3):651–657

    Article  CAS  PubMed  Google Scholar 

  • Niehoff A, Muller M, Bruggemann L, Savage T, Zaucke F, Eckstein F, Muller-Lung U, Bruggemann GP (2011) Deformational behaviour of knee cartilage and changes in serum cartilage oligomeric matrix protein (COMP) after running and drop landing. Osteoarthritis Cartilage 19(8):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Nowlan NC, Murphy P, Prendergast PJ (2007) Mechanobiology of embryonic limb development. Ann N Y Acad Sci 1101:389–411. doi:10.1196/annals.1389.003

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Gardner E (1978) The embryology of movable joints. In: Sokoloff L (ed) The joints and synovial fluid, vol 1. Academic, New York, pp 49–103

    Google Scholar 

  • Okada Y, Shinmei M, Tanaka O, Naka K, Kimura A, Nakanishi I, Bayliss MT, Iwata K, Nagase H (1992) Localization of matrix metalloproteinase 3 (stromelysin) in osteoarthritic cartilage and synovium. Lab Invest 66(6):680–690

    CAS  PubMed  Google Scholar 

  • Owman H, Tiderius CJ, Ericsson YB, Dahlberg LE (2014) Long-term effect of removal of knee joint loading on cartilage quality evaluated by delayed gadolinium-enhanced magnetic resonance imaging of cartilage. Osteoarthritis Cartilage 22(7):928–932. doi:10.1016/j.joca.2014.04.021

    Article  CAS  PubMed  Google Scholar 

  • Parkkinen JJ, Lammi MJ, Helminen HJ, Tammi M (1992) Local stimulation of proteoglycan synthesis in articular cartilage explants by dynamic compression in vitro. J Orthop Res 10(5):610–620

    Article  CAS  PubMed  Google Scholar 

  • Pavy-Le Traon A, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101(2):143–194

    Article  CAS  PubMed  Google Scholar 

  • Pearle AD, Warren RF, Rodeo SA (2005) Basic science of articular cartilage and osteoarthritis. Clin Sports Med 24(1):1–12. doi:10.1016/j.csm.2004.08.007

    Article  PubMed  Google Scholar 

  • Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16(12):1433–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petersson IF, Boegard T, Dahlstrom J, Svensson B, Heinegard D, Saxne T (1998) Bone scan and serum markers of bone and cartilage in patients with knee pain and osteoarthritis. Osteoarthritis Cartilage 6(1):33–39. doi:10.1053/joca.1997.0090

    Article  CAS  PubMed  Google Scholar 

  • Pitsillides AA (2006) Early effects of embryonic movement: ‘a shot out of the dark’. J Anat 208(4):417–431. doi:10.1111/j.1469-7580.2006.00556.x

    Article  PubMed  PubMed Central  Google Scholar 

  • Rehan Youssef A, Longino D, Seerattan R, Leonard T, Herzog W (2009) Muscle weakness causes joint degeneration in rabbits. Osteoarthritis Cartilage 17(9):1228–1235. doi:10.1016/j.joca.2009.03.017

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg K, Olsson H, Morgelin M, Heinegard D (1998) Cartilage oligomeric matrix protein shows high affinity zinc-dependent interaction with triple helical collagen. J Biol Chem 273(32):20397–20403

    Article  CAS  PubMed  Google Scholar 

  • Roth JH, Mendenhall HV, McPherson GK (1988) The effect of immobilization on goat knees following reconstruction of the anterior cruciate ligament. Clin Orthop Relat Res 229:278–282

    PubMed  Google Scholar 

  • Sah RL, Kim YJ, Doong JY, Grodzinsky AJ, Plaas AH, Sandy JD (1989) Biosynthetic response of cartilage explants to dynamic compression. J Orthop Res 7(5):619–636

    Article  CAS  PubMed  Google Scholar 

  • Sauerland K, Raiss RX, Steinmeyer J (2003) Proteoglycan metabolism and viability of articular cartilage explants as modulated by the frequency of intermittent loading. Osteoarthr Cartil 11(5):343–350. doi:10.1016/S1063-4584(03)00007-4

    Article  CAS  PubMed  Google Scholar 

  • Saxne T, Heinegard D (1992) Cartilage oligomeric matrix protein: a novel marker of cartilage turnover detectable in synovial fluid and blood. Br J Rheumatol 31(9):583–591

    Article  CAS  PubMed  Google Scholar 

  • Scotece M, Mobasheri A (2015) Leptin in osteoarthritis: Focus on articular cartilage and chondrocytes. Life Sci 140:75–78. doi:10.1016/j.lfs.2015.05.025

    Article  CAS  PubMed  Google Scholar 

  • Setton LA, Mow VC, Muller FJ, Pita JC, Howell DS (1997) Mechanical behavior and biochemical composition of canine knee cartilage following periods of joint disuse and disuse with remobilization. Osteoarthritis Cartilage 5(1):1–16

    Article  CAS  PubMed  Google Scholar 

  • Shefelbine SJ, Carter DR (2004) Mechanobiological predictions of growth front morphology in developmental hip dysplasia. J Orthop Res 22(2):346–352. doi:10.1016/j.orthres.2003.08.004

    Article  PubMed  Google Scholar 

  • Shwartz Y, Blitz E, Zelzer E (2013) One load to rule them all: mechanical control of the musculoskeletal system in development and aging. Differentiation 86(3):104–111. doi:10.1016/j.diff.2013.07.003

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Thomas KD, Schurman DJ, Carter DR, Wong M, van der Meulen MC (1992) Rabbit knee immobilization: bone remodeling precedes cartilage degradation. J Orthop Res 10(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Steinmeyer J, Ackermann B, Raiss RX (1997) Intermittent cyclic loading of cartilage explants modulates fibronectin metabolism. Osteoarthr Cartil 5(5):331–341. doi:10.1016/S1063-4584(97)80037-4

    Article  CAS  PubMed  Google Scholar 

  • Stokes IA, Iatridis JC (2004) Mechanical conditions that accelerate intervertebral disc degeneration: overload versus immobilization. Spine (Phila Pa 1976) 29(23):2724–2732

    Article  Google Scholar 

  • Svoboda SJ, Harvey TM, Owens BD, Brechue WF, Tarwater PM, Cameron KL (2013) Changes in serum biomarkers of cartilage turnover after anterior cruciate ligament injury. Am J Sports Med 41(9):2108–2116. doi:10.1177/0363546513494180

    Article  PubMed  Google Scholar 

  • Tetlow LC, Woolley DE (2001) Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage 9(5):423–431. doi:10.1053/joca.2000.0408

    Article  CAS  PubMed  Google Scholar 

  • Tetlow LC, Adlam DJ, Woolley DE (2001) Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum 44(3):585–594

    Article  CAS  PubMed  Google Scholar 

  • Thambyah A (2007) Contact stresses in both compartments of the tibiofemoral joint are similar even when larger forces are applied to the medial compartment. Knee 14(4):336–338. doi:10.1016/j.knee.2007.05.002

    Article  PubMed  Google Scholar 

  • Thompson RC Jr, Oegema TR Jr, Lewis JL, Wallace L (1991) Osteoarthrotic changes after acute transarticular load. An animal model. J Bone Joint Surg Am 73(7):990–1001

    PubMed  Google Scholar 

  • Tomiya M, Fujikawa K, Ichimura S, Kikuchi T, Yoshihara Y, Nemoto K (2009) Skeletal unloading induces a full-thickness patellar cartilage defect with increase of urinary collagen II CTx degradation marker in growing rats. Bone 44(2):295–305. doi:10.1016/j.bone.2008.10.038

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich C, Westphal K, Pietsch J, Winkler HD, Leder A, Bauer J, Kossmehl P, Grosse J, Schoenberger J, Infanger M, Egli M, Grimm D (2010) Characterization of human chondrocytes exposed to simulated microgravity. Cell Physiol Biochem 25(4–5):551–560. doi:10.1159/000303059

    Article  CAS  PubMed  Google Scholar 

  • Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46(8):2073–2078

    Article  CAS  PubMed  Google Scholar 

  • Vanwanseele B, Eckstein F, Knecht H, Spaepen A, Stussi E (2003) Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum 48(12):3377–3381

    Article  CAS  PubMed  Google Scholar 

  • Warwick R, Williams P (1973) Gray’s Anatomy. W.B. Saunders, Philadelphia

    Google Scholar 

  • Wong M, Carter DR (1988) Mechanical stress and morphogenetic endochondral ossification of the sternum. J Bone Joint Surg Am 70(7):992–1000

    CAS  PubMed  Google Scholar 

  • Wong M, Wuethrich P, Eggli P, Hunziker E (1996) Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J Orthop Res 14(3):424–432. doi:10.1002/jor.1100140313

    Article  CAS  PubMed  Google Scholar 

  • Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15(2):189–196. doi:10.1002/jor.1100150206

    Article  CAS  PubMed  Google Scholar 

  • Wong M, Siegrist M, Cao X (1999) Cyclic compression of articular cartilage explants is associated with progressive consolidation and altered expression pattern of extracellular matrix proteins. Matrix Biol 18(4):391–399

    Article  CAS  PubMed  Google Scholar 

  • Yong VW, Agrawal SM, Stirling DP (2007) Targeting MMPs in acute and chronic neurological conditions. Neurotherapeutics 4(4):580–589

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A.-M. Liphardt or A. Niehoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Liphardt, AM., Brüggemann, GP., Niehoff, A. (2016). Adaptation of Cartilage to Immobilization. In: Schneider, S. (eds) Exercise in Space. SpringerBriefs in Space Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-29571-8_2

Download citation

Publish with us

Policies and ethics