Skip to main content

8 An Emerging Interdisciplinary Field: Fungal–Bacterial Interactions

  • Chapter
  • First Online:
Environmental and Microbial Relationships

Part of the book series: The Mycota ((MYCOTA,volume IV))

Abstract

Fungus–bacterium interactions (FBIs) occur frequently in the environment, and they are mediated by physical association and molecular communication. The FBI affects both fungal and bacterial development and functioning, and their applicable value has become apparent for medicine, biotechnology, and agriculture. Symbiotic relationships that fungi actively engage with plants and animals are also strongly affected, and even facilitated, by bacteria. Common themes have recently emerged, which govern the physical and biochemical characteristics of these associations, whatever the ecological niches or applications investigated. This chapter highlights recent contributions to the understanding of FBI and addresses the rapid methodological development made in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade-Domínguez A, Salazar E, Vargas-Lagunas Mdel C, Kolter R, Encarnación S (2014) Eco-evolutionary feedbacks drive species interactions. ISME J 8:1041–1054

    Article  PubMed  PubMed Central  Google Scholar 

  • Antony-Babu S, Deveau A, Van Nostrand JD et al (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–47

    Article  CAS  PubMed  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Aspray TJ, Eirian Jones E, Whipps JM, Bending GD (2006) Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis. FEMS Microbiol Ecol 56:25–33

    Article  CAS  PubMed  Google Scholar 

  • Aylward F, Suen G, Biedermann PH, Adams AS, Scott JJ, Malfatti SA, Glavina del Rio T, Tringe SG, Poulsen M, Raffa KF, Klepzig KD, Currie CR (2014) Convergent bacterial microbiotas in the fungal agricultural systems of insects. MBio 5, e02077

    Article  PubMed  PubMed Central  Google Scholar 

  • Balbontín R, Vlamakis H, Kolter R (2014) Mutualistic interaction between Salmonella enterica and Aspergillus niger and its effects on Zea mays colonization. Microb Biotechnol 7:589–600

    Article  PubMed  PubMed Central  Google Scholar 

  • Bamford CV, d’Mello A, Nobbs AH, Dutton LC, Vickerman MM, Jenkinson HF (2009) Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1768

    Article  CAS  PubMed  Google Scholar 

  • Battin TJ, Slaon WT, Kjelleberg S, Daims H, Head IM, Curtis TP, Eberl L (2007) Microbial landscapes: new paths to biofilm research. Nat Rev Microbiol 5:76–78

    Article  CAS  PubMed  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciotto V, Genre A, Jargeat P, Lumini E, Bécard G, Bonfante P (2004) Vertical transmission of endobacteria in the arbuscular mycorrhizal fungus Gigaspora margarita through generation of vegetative spores. Appl Environ Microbiol 70:3600–3608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  PubMed  CAS  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Briard B, Bomme P, Lechner BE, Mislin GL, Lair V, Prévost MC, Latgé JP, Haas H, Beauvais A (2015) Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 5:8220

    Article  PubMed  CAS  Google Scholar 

  • Brule C, Frex-Klett P, Pierrat VC, Courrier S, Gerard F, Lemoine MC, Rousselet JL, Sommer G, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33:1683–1694

    Article  CAS  Google Scholar 

  • Bruno F, Marinella M, Santamaria M (2015) e-DNA meta-barcoding: from NGS raw data to taxonomic profiling. Methods Mol Biol 1269:257–78

    Article  PubMed  Google Scholar 

  • Cafaro MJ, Poulsen M, Little AE, Price SL, Gerardo NM, Wong B, Stuart AE, Larget B, Abbot P, Currie CR (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc Biol Sci 278:1814–1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Caravaca F, Maboreke H, Kurth F, Herrmann S, Tarkka MT, Ruess L (2015) Synergists and antagonists in the rhizosphere modulate microbial communities and growth of Quercus robur L. Soil Biol Biochem 82:65–73

    Article  CAS  Google Scholar 

  • Charlesworth SM, Nnadi E, Oyelola O, Bennett J, Warwick F, Jackson R, Lawson D (2012) Laboratory-based experiments to assess the use of green and food based compost to improve water quality in a Sustainable Drainage (SUDS) device such as a swale. Sci Total Environ 424:337–343

    Article  CAS  PubMed  Google Scholar 

  • Clausen CA (1996) Bacterial associations with decaying wood: a review. Int J Biodeterior Biodegradation 37:101–107

    Article  Google Scholar 

  • Coleman JP, Hudson LL, McKnight SL, Farrow JM 3rd, Calfee MW, Lindsey CA, Pesci EC (2008) Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsetti A, Rossi J, Gobbetti M (2001) Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int J Food Microbiol 69:1–10

    Article  CAS  PubMed  Google Scholar 

  • Cugini C, Calfee MW, Farrow JM 3rd, Morales DK, Pesci EC, Hogan DA (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311:81–83

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Cusano AM, Burlinson P, Deveau A et al (2010) Pseudomonas fluorescens BBc6R8 type III secretion mutants no longer promote ectomycorrhizal symbiosis. Environ Microbiol Rep 3:203–210

    Article  PubMed  CAS  Google Scholar 

  • Dalie DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria-potential for control in food safety of mould growth and mycotoxins: a review. Food Control 21:370–380

    Article  CAS  Google Scholar 

  • de Boer M, Bom P, Kindt F, Keurentjer JB, van der Sluis I, van Loon LC, Bakker PAHM (2003) Control of Fusarium wilt of radish by combining Pseudomonas have different disease-suppressive mechanisms. Phytopathology 93:626–632

    Article  PubMed  Google Scholar 

  • Deveau A, Barret M, Diedhiou AG et al (2014) Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor S238N and three beneficial, neutral and antagonistic soil bacteria. Microb Ecol 69:146–159

    Article  PubMed  Google Scholar 

  • Deveau A, Brulé C, Palin B, Champmartin D, Rubini P, Garbaye J, Sarniguet A, Frey-Klett P (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568

    Article  CAS  PubMed  Google Scholar 

  • Deveau A, Palin B, Delaruelle C et al (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755

    Article  CAS  PubMed  Google Scholar 

  • Dutton LC, Nobbs AH, Jepson K, Jepson MA, Vickerman MM, Aqeel Alawfi S, Munro CA, Lamont RJ, Jenkinson HF (2014) O-mannosylation in Candida albicans enables development of interkingdom biofilm communities. MBio 5, e00911

    Article  PubMed  PubMed Central  Google Scholar 

  • Erlacher A, Cernava T, Cardinale M et al (2015) Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. Front Microbiol 6:53

    Article  PubMed  PubMed Central  Google Scholar 

  • Falsetta ML, Klein MI, Colonne PM, Scott-Anne K, Gregoire S, Pai CH, Gonzalez-Begne M, Watson G, Krysan DJ, Bowen WH, Koo H (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans synergizes virulence of plaque biofilms in vivo. Infect Immun 82:1968–1981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550

    Article  CAS  PubMed  Google Scholar 

  • Folman LB, Klein Gunnewiek PJ, Boddy L, de Boer W (2008) Impact of white-rot fungi on numbers and community composition of bacteria colonizing beech wood from forest soil. FEMS Microbiol Ecol 63:181–191

    Article  CAS  PubMed  Google Scholar 

  • Foster RC, Marks GC (1967) Observations on the mycorrhizas of forest trees. II. The rhizosphere of Pinus radiata D. Don. Aust J Biol Sci 20:915–926

    Google Scholar 

  • Fox EP, Cowley ES, Nobile CJ, Hartooni N, Newman DK, Johnson AD (2014) Symbiotic relationship between Streptococcus mutans and Candida albicans. Infect Immun 82:1968–1981

    Article  CAS  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse ML, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat JC, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can J Forest Res 17:941–943

    Article  Google Scholar 

  • Garcia RA, Hotchkiss JH, Steinkraus KH (1999) The effect of lipids on bongkrekic (Bongkrek) acid toxin production by Burkholderia cocovenenans in coconut media. Food Addit Contam 16:63–69

    Article  CAS  PubMed  Google Scholar 

  • Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, Petiti L, Cruveiller S, Bianciotto V, Piffanelli P, Lanfranco L, Bonfante P (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6:136–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci U S A 106:4742–4746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harriott MM, Noverr MC (2011) Importance of Candida–bacterial polymicrobial biofilms in disease. Trends Microbiol 19:557–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He Z, Deng Y, Van Nostrand JD et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community composition, structure and functional activity. ISME J 4:1167–1179

    Article  CAS  PubMed  Google Scholar 

  • Hervé V, Le Roux X, Uroz S, Gelhaye E, Frey-Klett P (2014) Diversity and structure of bacterial communities associated with Phanerochaete chrysosporium during wood decay. Environ Microbiol 16:2238–2252

    Article  PubMed  CAS  Google Scholar 

  • Hoffman MT, Arnold AE (2010) Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl Environ Microbiol 76:4063–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan D, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Hogan DA, Kolter R (2002) Pseudomonas-Candida interactions: an ecological role for virulence factors. Science 296:2229–32

    Article  CAS  PubMed  Google Scholar 

  • Hoppe B, Kahl T, Karasch P, Wubet T, Bauhus J, Buscot F, Krüger D (2014) Network analysis reveals ecological links between N-fixing bacteria and wood-decaying fungi. PLoS One 9, e88141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh C, Aldrich J, Mottahedeh J, Kwon H, Johnson C, Mrsh R (1998) Cloning and characterization of Physarum polycepharum tectonins. Homologues of limulus lectin L6. J Biol Chem 273:6565–6574

    Article  CAS  PubMed  Google Scholar 

  • Irlinger F, Yung SA, Sarthou AS, Delbès-Paus C, Montel MC, Coton E, Coton M, Helinck S (2012) Ecological and aromatic impact of two Gram-negative bacteria (Psychrobacter celer and Hafnia alvei) inoculated as part of the whole microbial community of an experimental smear soft cheese. Int J Food Microbiol 153:332–338

    Article  PubMed  Google Scholar 

  • Kohlmeier S, Smits TH, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646

    Article  CAS  PubMed  Google Scholar 

  • Kurth F, Mailänder S, Bönn M, Feldhahn L, Herrmann S, Große I, Buscot F, Schrey SD, Tarkka MT (2014) Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Mol Plant Microbe Interact 27:891–900

    Article  CAS  PubMed  Google Scholar 

  • Kurth F, Feldhahn L, Bönn M, Herrmann S, Buscot F, Tarkka MT (2015) Large scale transcriptome analysis reveals interplay between development of forest trees and a beneficial mycorrhiza helper bacterium. BMC Genomics 16:658

    Article  PubMed  PubMed Central  Google Scholar 

  • Kurth F, Zeitler K, Feldhahn L, Neu TR, Weber T, Krištůfek V, Wubet T, Herrmann S, Buscot F, Tarkka MT (2013) Detection and quantification of a mycorrhization helper bacterium and a mycorrhizal fungus in plant-soil microcosms at different levels of complexity. BMC Microbiol 13:205

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lackner G, Moebius N, Hertweck C (2011) Endofungal bacterium controls its host by an hrp type III secretion system. ISME J 5:252–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defence response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  CAS  PubMed  Google Scholar 

  • Lehr NA, Schrey SD, Hampp R, Tarkka MT (2008) Root inoculation with a forest soil streptomycete leads to locally and systemically increased resistance against phytopathogens in Norway spruce. New Phytol 177:965–976

    Article  PubMed  Google Scholar 

  • Little AE, Currie CR (2008) Black yeast symbionts compromise the efficiency of antibiotic defenses in fungus-growing ants. Ecology 89:1216–1222

    Article  PubMed  Google Scholar 

  • Lo Cantore P, Lazzaroni S, Coraiola M, Dalla Serra M, Cafarchia C, Evidente A, Lacobellis NS (2006) Biological characterization of white line-inducing principle (WLIP) produced by Pseudomonas reactans NCPPB1311. Mol Plant Microbe Interact 19:1113–1120

    Article  CAS  PubMed  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterization and effects on growth of root symbiotic, and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136

    Article  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  PubMed  Google Scholar 

  • Mela F, Fritsche K, de Boer W et al (2011) Dual transcriptional profiling of a bacterial/fungal confrontation: Collimonas fungivorans versus Aspergillus niger. ISME J 5:1494–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melin P, Schnürer J, Wagner EGH (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    Article  CAS  PubMed  Google Scholar 

  • Meyer JR, Linderman RG (1986) Response of subterranean clover to dual inoculation with vesicular-arbuscular fungi and a plant growth promoting bacterium. Soil Biol Biochem 18:185–190

    Article  CAS  Google Scholar 

  • Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moebius N, Üzüm Z, Dijksterhuis J, Lackner G, Hertweck C (2014) Active invasion of bacteria into living fungal cells. eLife 3, e03007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA (2013) Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. MBio 4:e00526–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morales DK, Hogan DA (2010) Candida albicans interactions with bacteria in the context of human health and disease. PLoS Pathog 6, e1000886

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morales DK, Jacobs NJ, Rajamani S et al (2010) Antifungal mechanisms by which a novel Pseudomonas aeruginosa phenazine toxin kills Candida albicans in biofilms. Mol Microbiol 78:1379–1392

    Article  CAS  PubMed  Google Scholar 

  • Mosse B (1970) Honey-coloured, sessile Endogone spores. II. Changes in fine structure during spore development. Arch Mikrobiol 74:129–145

    Article  Google Scholar 

  • Mowat E, Rajendran R, Williams C, McCulloch E, Jones B, Lang S, Ramage G (2010) Pseudomonas aeruginosa and their small diffusible extracellular molecules inhibit Aspergillus fumigatus biofilm formation. FEMS Microbiol Lett 313:96–102

    Article  CAS  PubMed  Google Scholar 

  • Murray AC, Woodward S (2003) In vitro interactions between bacteria isolated from Sitka spruce stumps and Heterobasidion annosum. For Pathol 33:53–67

    Google Scholar 

  • Nash EE, Peters BM, Palmer GE et al (2014) Morphogenesis is not required for Candida albicans-Staphylococcus aureus intra-abdominal infection-mediated dissemination and lethal sepsis. Infect Immun 82:3426–3435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazir R, Tazetdinova DI, van Elsas JD (2014) Burkholderia terrae BS001 migrates proficiently with diverse fungal hosts through soil and provides protection from antifungal agents. Front Microbiol 5:598

    Article  PubMed  PubMed Central  Google Scholar 

  • Nazir R, Warmink JA, Boersma H, van Elsas JD (2010) Mechanisms that promote bacterial fitness in fungal-affected soil microhabitats. FEMS Microbiol Ecol 71:169–185

    Article  CAS  PubMed  Google Scholar 

  • Oh DC, Poulsen M, Currie CR, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2005) Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437:884–888

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martinez LP, Hertweck C (2007) A gene cluster encoding rhizoxin biosynthesis in “Burkholderia rhizoxina”, the bacterial endosymbiont of the fungus Rhizopus microsporus. Chembiochem 8:41–45

    Article  CAS  PubMed  Google Scholar 

  • Peleg AY, Tampakakis E, Fuchs BB et al (2008) Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. Proc Natl Acad Sci U S A 105:14585–14590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phelan VV, Moree WJ, Aguilar J et al (2014) Impact of a transposon insertion in phzF2 on the specialized metabolite production and interkingdom interactions of Pseudomonas aeruginosa. J Bacteriol 196:1683–1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pinto-Tomas AA, Anderson MA, Suen G, Stevenson DM, Chu FS, Cleland WW, Weimer PJ, Currie CR (2009) Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326:1120–1123

    Article  CAS  PubMed  Google Scholar 

  • Pion M, Spangenberg JE, Simon A, Bindschedler S, Flury C, Chatelain A, Bshary R, Job D, Junier P (2013) Bacterial farming by the fungus Morchella crassipes. Proc Biol Sci 280:2013–2242

    Article  Google Scholar 

  • Ramírez Granillo A, Canales MG, Espíndola ME, Martínez Rivera MA, de Lucio VM, Tovar AV (2015) Antibiosis interaction of Staphylococccus aureus on Aspergillus fumigatus assessed in vitro by mixed biofilm formation. BMC Microbiol 15:363

    Article  CAS  Google Scholar 

  • Ranjard L, Dequiedt S, Chemidlin Prévost-Bouré N et al (2013) Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity. Nat Commun 4:1434

    Article  CAS  PubMed  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea JM (1997) Interactions between plant growth promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides, a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Reybroeck W, De Vleeschouwer M, Marchand S, Sinnaeve D, Heylen K, De Block J, Madder A, Martins JC, Heyndrickx M (2014) Cyclic lipodepsipeptides produced by Pseudomonas spp. naturally present in raw milk induce inhibitory effects on microbiological inhibitor assays for antibiotic residue screening. PLoS One 9, e98266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Riedlinger J, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fiedler HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rikhvanov EG, Varakina NN, Sozinov DY, Voinikov VK (1999) Association of bacteria and yeasts in hot springs. Appl Environ Microbiol 65:4292–4293

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romano JD, Kolter R (2005) Pseudomonas-Saccharomyces interactions: influence of fungal metabolism on bacterial physiology and survival. J Bacteriol 187:940–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schamfuss S, Neu TR, van der Meer JR, Tecon R, Harms H, Wick LY (2013) Impact of mycelia on the accessibility of fluorene to PAH-degrading bacteria. Environ Sci Technol 47:6908–6915

    CAS  PubMed  Google Scholar 

  • Scherlach K, Graupner K, Hertweck C (2013) Molecular bacteria-fungi interactions: effects on environment, food, and medicine. Annu Rev Microbiol 67:375–397

    Article  CAS  PubMed  Google Scholar 

  • Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 108:1955–1960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhization helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  CAS  PubMed  Google Scholar 

  • Schroeckh V, Scherlach K, Nützmann HW, Shelest E, Schmidt-Heck W, Schuemann J, Martin K, Hertweck C, Brakhage AA (2009) Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc Natl Acad Sci U S A 106:14558–14563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman RJ, Nobbs AH, Vickerman MM, Barbour ME, Jenkinson HF (2010) Interaction of Candida albicans cell wall Als3 protein with Streptococcus gordonii SspB adhesin promotes development of mixed-species communities. Infect Immun 78:4644–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley CE, Stöckli M, van Swaay D et al (2014) Probing bacterial-fungal interactions at the single cell level. Integr Biol 6:935–945

    Article  CAS  Google Scholar 

  • Sztajer H, Szafranski SP, Tomasch J, Reck M, Nimtz M, Rohde M, Wagner-Döbler I (2014) Cross-feeding and interkingdom communication in dual-species biofilms of Streptococcus mutans and Candida albicans. ISME J 8:2256–2271

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O, Bacht M, Graf M, Maboreke H, Fleischmann F, Grams TE, Ruess L, Schädler M, Brandl R, Scheu S, Schrey SD, Grosse I, Buscot F (2013) OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytol 199:529–540

    Article  CAS  PubMed  Google Scholar 

  • Tarkka MT, Sarniguet A, Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium-fungus interactions. Curr Genet 55:233–243

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto T, Murata H, Shirata A (2002) Identification of non-pseudomonad bacteria from fruit bodies of wild agaricales fungi that detoxify tolaasin produced by Pseudomonas tolaasii. Biosci Biotechnol Biochem 66:2201–2208

    Article  CAS  PubMed  Google Scholar 

  • Valásková V, de Boer W, Gunnewiek PJ, Pospísek M, Baldrian P (2009) Phylogenetic composition and properties of bacteria coexisting with the fungus Hypholoma fasciculare in decaying wood. ISME J 3:1218–1221

    Article  PubMed  CAS  Google Scholar 

  • Valera MJ, Torija MJ, Mas A, Mateo E (2015) Acetic acid bacteria from biofilm of strawberry vinegar visualized by microscopy and detected by complementing culture-dependent and culture-independent techniques. Food Microbiol 46:452–462

    Article  CAS  PubMed  Google Scholar 

  • Valm AM, Welch JLM, Rieken CW et al (2011) Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc Natl Acad Sci U S A 108:4152–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Rij ET, Girard G, Lugtenberg BJ, Bloemberg GV (2005) Influence of fusaric acid on phenazine-1-carboxamide synthesis and gene expression of Pseudomonas chlororaphis strain PCL1391. Microbiology 151:2805–2814

    Article  PubMed  CAS  Google Scholar 

  • Vieira FCS, Nahas E (2005) Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 160:197–202

    Article  CAS  PubMed  Google Scholar 

  • Viollet A, Corberand T, Mougel C et al (2011) Fluorescent pseudomonads harboring type III secretion genes are enriched in the mycorrhizosphere of Medicago truncatula. FEMS Microbiol Ecol 75:457–67

    Article  CAS  PubMed  Google Scholar 

  • Wallace DF, Cook SR, Dickinson DJ (2008) The role of non-decay microorganisms in the degradation of organic wood preservatives. Dev Commer Wood Preserv 982:312–322

    Article  CAS  Google Scholar 

  • Wargo MJ, Hogan DA (2006) Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol 9:359–364

    Article  CAS  PubMed  Google Scholar 

  • Warmink JA, Nazir R, van Elsas JD (2009) Universal and species-specific bacterial ‘fungiphiles’ in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11:300–312

    Article  CAS  PubMed  Google Scholar 

  • Warmink JA, van Elsas JD (2008) Selection of bacterial populations in the mycosphere of Laccaria proxima: is type III secretion involved? ISME J 2:887–900

    Article  CAS  PubMed  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclide. Int Biodeter Biodegr 35:17–40

    Article  CAS  Google Scholar 

  • Willger SD, Grim SL, Dolben EL et al (2014) Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. Microbiome 2:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfe BE, Button JE, Santarelli M, Dutton RJ (2014) Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158:422–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao J, Klein MI, Falsetta ML, Lu B, Delahunty CM, Yates JR 3rd, Heydorn A, Koo H (2012) The exopolysaccharide matrix modulates the interaction between 3D architecture and virulence of a mixed-species oral biofilm. PLoS Pathog 8, e1002623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu XL, Lee RT, Fang HM, Wang YM, Li R, Zou H, Zhu Y, Wang Y (2008) Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4:28–39

    Article  CAS  PubMed  Google Scholar 

  • Zheng H, Kim J, Liew M, Yan JK, Herrera O, Bok JW, Kelleher NL, Keller NP, Wang Y (2015) Redox metabolites signal polymicrobial biofilm development via the NapA oxidative stress cascade in Aspergillus. Curr Biol 25:29–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, He Z, Yang Y et al (2015) High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6:e02288–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mika Tarkka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tarkka, M., Deveau, A. (2016). 8 An Emerging Interdisciplinary Field: Fungal–Bacterial Interactions. In: Druzhinina, I., Kubicek, C. (eds) Environmental and Microbial Relationships. The Mycota, vol IV. Springer, Cham. https://doi.org/10.1007/978-3-319-29532-9_8

Download citation

Publish with us

Policies and ethics