Skip to main content

Autoantibodies in Neuromuscular Disorders

  • Chapter
  • First Online:
Acquired Neuromuscular Disorders

Abstract

Autoimmune neuromuscular disorders are very heterogeneous both in their clinical presentation and their pathogenesis. The discovery of specific autoantibodies targeting the nicotinic acetylcholine receptor in myasthenia gravis led the way in the description of a wide variety of autoantibodies that helped diagnosing, classifying, and treating autoimmune disorders of the neuromuscular junction, inflammatory neuropathies, and myositis. The description of antibodies against muscle-specific kinase in myasthenia, antiganglioside antibodies, or the new antibodies against paranodal structures in inflammatory neuropathies and the anti-synthetase antibodies in myositis was critical for the detection of distinct diseases and phenotypes within classical clinical syndromes. Searching for highly disease-specific autoantibodies should be a priority in autoimmune neuromuscular disorders to understand their pathogenesis and base diagnosis in biomarkers rather than clinical criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aharonov A, Abramsky O, Tarrab-Hazdai R, Fuchs S (1975) Humoral antibodies to acetylcholine receptor in patients with myasthenia gravis. Lancet 2:340–342

    Article  CAS  PubMed  Google Scholar 

  2. Hoch W, McConville J, Helms S et al (2001) Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7:365–368

    Article  CAS  PubMed  Google Scholar 

  3. Díaz-Manera J, Martínez-Hernández E, Querol L et al (2012) Long-lasting treatment effect of rituximab in MuSK myasthenia. Neurology 78:189–193

    Article  PubMed  Google Scholar 

  4. Brannagan TH (2011) Current diagnosis of CIDP: the need for biomarkers. J Peripher Nerv Syst 16(Suppl 1):3–13

    Article  PubMed  Google Scholar 

  5. Patrick J, Lindstrom J (1973) Autoimmune response to acetylcholine receptor. Science 180:871–872

    Article  CAS  PubMed  Google Scholar 

  6. Toyka KV, Brachman D, Pestronk A, Kao I (1975) Myasthenia gravis: passive transfer from man to mouse. Science 80(190):397

    Article  Google Scholar 

  7. McConville J, Farrugia ME, Beeson D et al (2004) Detection and characterization of MuSK antibodies in seronegative myasthenia gravis. Ann Neurol 55:580–584

    Article  CAS  PubMed  Google Scholar 

  8. Zisimopoulou P, Evangelakou P, Tzartos J et al (2013) A comprehensive analysis of the epidemiology and clinical characteristics of anti-LRP4 in myasthenia gravis. J Autoimmun 52:139–145. doi:10.1016/j.jaut.2013

    Article  PubMed  Google Scholar 

  9. Higuchi O, Hamuro J, Motomura M, Yamanashi Y (2011) Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69:418–422

    Article  CAS  PubMed  Google Scholar 

  10. Leite MI, Jacob S, Viegas S et al (2008) IgG1 antibodies to acetylcholine receptors in “seronegative” myasthenia gravis. Brain 131:1940–1952

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gallardo E, Martínez-Hernández E, Titulaer MJ et al (2014) Cortactin autoantibodies in myasthenia gravis. Autoimmun Rev 13(10):1003–1007. doi:10.1016/j.autrev.2014.08.039

    Article  CAS  PubMed  Google Scholar 

  12. Romi F, Skeie GO, Gilhus NE, Aarli JA (2005) Striational antibodies in myasthenia gravis: reactivity and possible clinical significance. Arch Neurol 62:442–446

    Article  PubMed  Google Scholar 

  13. Meriggioli MN, Sanders DB (2009) Autoimmune myasthenia gravis: emerging clinical and biological heterogeneity. Lancet Neurol 8:475–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drachman DB, de Silva S, Ramsay D, Pestronk A (1987) Humoral pathogenesis of myasthenia gravis. Ann N Y Acad Sci 505:90–105

    Article  CAS  PubMed  Google Scholar 

  15. Engel AG, Lindstrom JM, Lambert EH, Lennon VA (1977) Ultrastructural localization of the acetylcholine receptor in myasthenia gravis and in its experimental autoimmune model. Neurology 27:307–315

    Article  CAS  PubMed  Google Scholar 

  16. Newsom-Davis J, Pinching AJ, Vincent A, Wilson SG (1978) Function of circulating antibody to acetylcholine receptor in myasthenia gravis: investigation by plasma exchange. Neurology 28:266–272

    Article  CAS  PubMed  Google Scholar 

  17. Nirula A, Glaser SM, Kalled SL et al (2011) What is IgG4? A review of the biology of a unique immunoglobulin subtype. Curr Opin Rheumatol 23:119–124

    Article  CAS  PubMed  Google Scholar 

  18. Klooster R, Plomp JJ, Huijbers MG et al (2012) Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 135(Pt 4):1081–1101. doi:10.1093/brain/aws025

    Article  PubMed  Google Scholar 

  19. Kawakami Y, Ito M, Hirayama M et al (2011) Anti-MuSK autoantibodies block binding of collagen Q to MuSK. Neurology 77:1819–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koneczny I, Cossins J, Waters P et al (2013) MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One 8:e80695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huijbers MG, Zhang W, Klooster R et al (2013) MuSK IgG4 autoantibodies cause myasthenia gravis by inhibiting binding between MuSK and Lrp4. Proc Natl Acad Sci U S A 110(51):20783–20788. doi:10.1073/pnas.1313944110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mori S, Kubo S, Akiyoshi T et al (2012) Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. Am J Pathol 180:798–810

    Article  CAS  PubMed  Google Scholar 

  23. Ohta K, Shigemoto K, Fujinami A et al (2007) Clinical and experimental features of MuSK antibody positive MG in Japan. Eur J Neurol 14:1029–1034

    Article  CAS  PubMed  Google Scholar 

  24. Bartoccioni E, Scuderi F, Minicuci GM et al (2006) Anti-MuSK antibodies: correlation with myasthenia gravis severity. Neurology 67:505–507

    Article  CAS  PubMed  Google Scholar 

  25. Pevzner A, Schoser B, Peters K et al (2012) Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259:427–435

    Article  CAS  PubMed  Google Scholar 

  26. Zhang B, Tzartos JS, Belimezi M et al (2011) Autoantibodies to lipoprotein-related protein 4 in patients with double-seronegative myasthenia gravis. Arch Neurol 69(4):445–451. doi:10.1001/archneurol.2011.2393

    PubMed  Google Scholar 

  27. Rodriguez Cruz PM, Huda S, López-Ruiz P, Vincent A (2015) Use of cell-based assays in myasthenia gravis and other antibody-mediated diseases. Exp Neurol 270:66–71. doi:10.1016/j.expneurol.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  28. Verschuuren JJ, Huijbers MG, Plomp JJ et al (2013) Pathophysiology of myasthenia gravis with antibodies to the acetylcholine receptor, muscle-specific kinase and low-density lipoprotein receptor-related protein 4. Autoimmun Rev 12(9):1–6

    Article  Google Scholar 

  29. Jacob S, Viegas S, Leite MI et al (2012) Presence and pathogenic relevance of antibodies to clustered acetylcholine receptor in ocular and generalized myasthenia gravis Clustered AChR antibodies in myasthenia gravis. Arch Neurol 69(8):1–8

    Article  Google Scholar 

  30. Madhavan R, Gong ZL, Ma JJ et al (2009) The function of cortactin in the clustering of acetylcholine receptors at the vertebrate neuromuscular junction. PLoS One 4(12):e8478. doi:10.1371/journal.pone.0008478

    Article  PubMed  PubMed Central  Google Scholar 

  31. Heldal AT, Eide GE, Romi F et al (2014) Repeated acetylcholine receptor antibody-concentrations and association to clinical myasthenia gravis development. PLoS One 9, e114060

    Article  PubMed  PubMed Central  Google Scholar 

  32. Szczudlik P, Szyluk B, Lipowska M et al (2014) Antititin antibody in early- and late-onset myasthenia gravis. Acta Neurol Scand 130(4):229–233. doi:10.1111/ane.12271

    Article  CAS  PubMed  Google Scholar 

  33. Titulaer MJ, Lang B, Verschuuren JJ (2011) Lambert-Eaton myasthenic syndrome: from clinical characteristics to therapeutic strategies. Lancet Neurol 10:1098–1107

    Article  PubMed  Google Scholar 

  34. Lindstrom JM, Seybold ME, Lennon VA et al (1976) Antibody to acetylcholine receptor in myasthenia gravis. Prevalence, clinical correlates, and diagnostic value. Neurology 26:1054–1059

    Article  CAS  PubMed  Google Scholar 

  35. Leite MI, Waters P, Vincent A (2010) Diagnostic use of autoantibodies in myasthenia gravis. Autoimmunity 43:371–379

    Article  PubMed  Google Scholar 

  36. Masuda T, Motomura M, Utsugisawa K et al (2012) Antibodies against the main immunogenic region of the acetylcholine receptor correlate with disease severity in myasthenia gravis. J Neurol Neurosurg Psychiatry 83(9):935–940. doi:10.1136/jnnp-2012-302705

    Article  PubMed  Google Scholar 

  37. Sanders DB, Burns TM, Cutter GR et al (2014) Does change in acetylcholine receptor antibody level correlate with clinical change in myasthenia gravis? Muscle Nerve 49:483–486

    Article  CAS  PubMed  Google Scholar 

  38. Willison HJ, Yuki N (2002) Peripheral neuropathies and anti-glycolipid antibodies. Brain 125:2591–2625

    Article  PubMed  Google Scholar 

  39. Mathey EK, Park SB, Hughes RA et al (2015) Chronic inflammatory demyelinating polyradiculoneuropathy: from pathology to phenotype. J Neurol Neurosurg Psychiatry 86(9):1–13

    Article  Google Scholar 

  40. Köller H, Kieseier BC, Jander S, Hartung H-P (2005) Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352:1343–1356

    Article  PubMed  Google Scholar 

  41. Devaux JJ, Odaka M, Yuki N (2012) Nodal proteins are target antigens in Guillain-Barré syndrome. J Peripher Nerv Syst 17:62–71

    Article  CAS  PubMed  Google Scholar 

  42. Querol L, Nogales-Gadea G, Rojas-Garcia R et al (2013) Antibodies to contactin-1 in chronic inflammatory demyelinating polyneuropathy. Ann Neurol 73:370–380

    Article  CAS  PubMed  Google Scholar 

  43. Ng JKM, Malotka J, Kawakami N et al (2012) Neurofascin as a target for autoantibodies in peripheral neuropathies. Neurology 79(23):2241–2248. doi:10.1212/WNL.0b013e31827689ad

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Meyer zu Hörste G, Hartung HP, Kieseier BC (2007) From bench to bedside--experimental rationale for immune-specific therapies in the inflamed peripheral nerve. Nat Clin Pract Neurol 3:198–211

    Article  PubMed  Google Scholar 

  45. Chavada G, Willison HJ (2012) Autoantibodies in immune-mediated neuropathies. Curr Opin Neurol 25:550–555

    Article  CAS  PubMed  Google Scholar 

  46. Labasque M, Hivert B, Nogales-Gadea G et al (2014) Specific contactin N-glycans are implicated in neurofascin binding and autoimmune targeting in peripheral neuropathies. J Biol Chem 289(11):7907–7918. doi:10.1074/jbc.M113.528489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Braun PE, Frail DE, Latov N (1982) Myelin-associated glycoprotein is the antigen for a monoclonal IgM in polyneuropathy. J Neurochem 39:1261–1265

    Article  CAS  PubMed  Google Scholar 

  48. Yuki N (2001) Infectious origins of, and molecular mimicry in, Guillain-Barré and Fisher syndromes. Lancet Infect Dis 1:29–37

    Article  CAS  PubMed  Google Scholar 

  49. Van Doorn PA, Ruts L, Jacobs BC (2008) Clinical features, pathogenesis, and treatment of Guillain-Barré syndrome. Lancet Neurol 7:939–950

    Article  PubMed  Google Scholar 

  50. Cats EA, van der Pol WL, Tio-Gillen AP et al (2014) Clonality of anti-GM1 IgM antibodies in multifocal motor neuropathy and the Guillain-Barré syndrome. J Neurol Neurosurg Psychiatry 86(5):10–13

    Google Scholar 

  51. Santoro M, Uncini A, Corbo M et al (1992) Experimental conduction block induced by serum from a patient with anti-GM1 antibodies. Ann Neurol 31:385–390

    Article  CAS  PubMed  Google Scholar 

  52. Paparounas K, O’Hanlon GM, O’Leary CP et al (1999) Anti-ganglioside antibodies can bind peripheral nerve nodes of Ranvier and activate the complement cascade without inducing acute conduction block in vitro. Brain 122(Pt 5):807–816

    Article  PubMed  Google Scholar 

  53. Fisher M (1956) An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med 255:57–65

    Article  CAS  PubMed  Google Scholar 

  54. Lo YL (2007) Clinical and immunological spectrum of the Miller Fisher syndrome. Muscle Nerve 36:615–627

    Article  CAS  PubMed  Google Scholar 

  55. O’Hanlon GM, Plomp JJ, Chakrabarti M et al (2001) Anti-GQ1b ganglioside antibodies mediate complement-dependent destruction of the motor nerve terminal. Brain 124:893–906

    Article  PubMed  Google Scholar 

  56. Arai M, Susuki K, Koga M (2003) Axonal pharyngeal-cervical-brachial variant of Guillain-Barré syndrome without Anti-GT1a IgG antibody. Muscle Nerve 28:246–250

    Article  PubMed  Google Scholar 

  57. Sawai S, Satoh M, Mori M et al (2014) Moesin is a possible target molecule for cytomegalovirus-related Guillain-Barré syndrome. Neurology 83(2):113–117. doi:10.1212/WNL.0000000000000566

    Google Scholar 

  58. Dalakas MC (2011) Advances in the diagnosis, pathogenesis and treatment of CIDP. Nat Rev Neurol 7(9):1–11

    Article  Google Scholar 

  59. Berger M, McCallus DE, Lin CS-Y (2013) Rapid and reversible responses to IVIG in autoimmune neuromuscular diseases suggest mechanisms of action involving competition with functionally important autoantibodies. J Peripher Nerv Syst 296:275–296

    Article  Google Scholar 

  60. Miura Y, Devaux JJ, Fukami Y et al (2015) Contactin 1 IgG4 associates to chronic inflammatory demyelinating polyneuropathy with sensory ataxia. Brain 138(Pt 6):1–8

    Google Scholar 

  61. Kawamura N, Yamasaki R, Yonekawa T et al (2013) Anti-neurofascin antibody in patients with combined central and peripheral demyelination. Neurology 81(8):714–722. doi:10.1212/WNL.0b013e3182a1aa9c

    Article  CAS  PubMed  Google Scholar 

  62. Querol L, Nogales-Gadea G, Rojas-Garcia R et al (2014) Neurofascin IgG4 antibodies in CIDP associate with disabling tremor and poor response to IVIg. Neurology 82(10):879–886. doi:10.1212/WNL.0000000000000205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hughes RAC, Allen D, Makowska A, Gregson NA (2006) Pathogenesis of chronic inflammatory demyelinating polyradiculoneuropathy. J Peripher Nerv Syst 11:30–46

    Article  PubMed  Google Scholar 

  64. Kuwahara M, Suzuki H, Samukawa M et al (2013) Clinical features of CIDP with LM1-associated antibodies. J Neurol Neurosurg Psychiatry 84:573–575

    Article  PubMed  Google Scholar 

  65. Vlam L, van der Pol WL, Cats EA et al (2012) Multifocal motor neuropathy: diagnosis, pathogenesis and treatment strategies. Nat Rev Neurol 8:48–58

    Article  CAS  Google Scholar 

  66. Nobile-Orazio E, Giannotta C, Musset L et al (2014) Sensitivity and predictive value of anti-GM1/galactocerebroside IgM antibodies in multifocal motor neuropathy. J Neurol Neurosurg Psychiatry 85:754–758

    Article  PubMed  Google Scholar 

  67. Notturno F, Di Febo T, Yuki N et al (2014) Autoantibodies to neurofascin-186 and gliomedin in multifocal motor neuropathy. J Neuroimmunol 276:207–212

    Article  CAS  PubMed  Google Scholar 

  68. Rajabally YA (2011) Neuropathy and paraproteins: review of a complex association. Eur J Neurol 18:1291–1298

    Article  CAS  PubMed  Google Scholar 

  69. Dalakas MC (2010) Pathogenesis and Treatment of Anti-MAG Neuropathy. Curr Treat Options Neurol 12:71–83

    Article  PubMed  Google Scholar 

  70. Willison HJ, O’Leary CP, Veitch J et al (2001) The clinical and laboratory features of chronic sensory ataxic neuropathy with anti-disialosyl IgM antibodies. Brain 124:1968–1977

    Article  CAS  PubMed  Google Scholar 

  71. Lancaster E, Huijbers MGM, Bar V et al (2011) Investigations of caspr2, an autoantigen of encephalitis and neuromyotonia. Ann Neurol 69:303–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Allenbach Y, Benveniste O (2015) Diagnostic utility of auto-antibodies in inflammatory muscle diseases. J Neuromuscul Dis 2(1):13–25

    Google Scholar 

  73. Mohassel P, Mammen AL (2013) The spectrum of statin myopathy. Curr Opin Rheumatol 25:747–752

    Article  CAS  PubMed  Google Scholar 

  74. Labrador-Horrillo M, Martinez MA, Selva-O’Callaghan A et al (2012) Anti-TIF1gamma antibodies (anti-p155) in adult patients with dermatomyositis: comparison of different diagnostic assays. Ann Rheum Dis 71:993–996

    Article  CAS  PubMed  Google Scholar 

  75. Betteridge ZE, Gunawardena H, Chinoy H et al (2009) Clinical and human leucocyte antigen class II haplotype associations of autoantibodies to small ubiquitin-like modifier enzyme, a dermatomyositis-specific autoantigen target, in UK Caucasian adult-onset myositis. Ann Rheum Dis 68:1621–1625

    Article  CAS  PubMed  Google Scholar 

  76. Dalakas MC, Illa I, Gallardo E, Juarez C (1997) Inclusion body myositis and paraproteinemia: incidence and immunopathologic correlations. Ann Neurol 41:100–104

    Article  CAS  PubMed  Google Scholar 

  77. Benjamin Larman H, Salajegheh M, Nazareno R et al (2013) Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 73:408–418

    Article  CAS  PubMed  Google Scholar 

  78. Pluk H, Van Hoeve BJA, Van Dooren SHJ et al (2013) Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann Neurol 73:397–407

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Illa Sendra MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Querol, L., Gallardo, E., Illa Sendra, I. (2016). Autoantibodies in Neuromuscular Disorders. In: Angelini, C. (eds) Acquired Neuromuscular Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-29514-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29514-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29512-1

  • Online ISBN: 978-3-319-29514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics