Skip to main content

Language and Brain Complexity

  • Chapter
  • First Online:
Language in Complexity

Part of the book series: Lecture Notes in Morphogenesis ((LECTMORPH))

Abstract

Humans understand their language thanks to brain processes, and one of the most ambitious endeavors  of neurolinguistics is that of bridging the gap between the bare physiology of the brain and linguistic meaning. The aim of this chapter is to elucidate concepts that may help in bridging this gap, through the lens of brain complexity. Unlike several other chapters of this book, our effort is in analyzing complexity in the brain, and in particular, in brain circuits that support language, rather than in language itself, as an abstract entity. The account we offer for brain complexity in relation to language is presented in terms of self-organization, the general phenomenon of the gradual change of local parts of a system, that lead to their interactions become more functional with respect to their initial arrangement. Forms of neural self-organization appear to be essential in scaffolding representations of the external world within cortical areas, and mathematical formulations of self-organization at the level of the cerebral cortex will be described. We will present examples of models based on self-organization that reproduce specific aspects of the semantics of language. These models are examples of a research direction called “neurosemantics”, an enterprise focused on explaining the development of semantics by concentrating on the constituent neural processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboitiz, F., Garcia, R. R., Bosman, C., & Brunetti, E. (2006). Cortical memory mechanisms and language origins. Brain and Language, 98, 40–56.

    Article  Google Scholar 

  • Azmitia, E. C., DeFelipe, J., Jones, E. G., Rakic, P., & Ribak, C. E. (Eds.). (2002). Changing views of Cajal’s Neuron. Amsterdam: Elsevier.

    Google Scholar 

  • Baddeley, A. (1992). Working memory. Science, 255, 556–559.

    Article  Google Scholar 

  • Bates, E., Dal, P. S., & Thal, D. (1995). Individual differences and their implications for theories of language development. In P. Fletcher & B. M. Whinney (Eds.), Handbook of Child Language (pp. 96–151). Oxford: Basil Blackwell.

    Google Scholar 

  • Bear, M., & Kirkwood, A. (1993). Neocortical long term potentiation. Current Opinion in Neurobiology, 3, 197–202.

    Article  Google Scholar 

  • Bechtel, W. (2014). Investigating neural representations: The tale of place cells. Synthese, 1–35.

    Google Scholar 

  • Bednar, J. A. (2009). Topographica: Building and analyzing map-level simulations from Python, C/C++, MATLAB, NEST, or NEURON components. Frontiers in Neuroinformatics, 3, 8.

    Article  Google Scholar 

  • Bednar, J. A. (2014). Topographica. In D. Jaeger & R. Jung (Eds.), Encyclopedia of Computational Neuroscience (pp. 1–5). Berlin: Springer.

    Chapter  Google Scholar 

  • Bermúdez-Rattoni, F. (Ed.). (2007). Neural plasticity and memory: From genes to brain imaging. Boca Raton: CRC Press.

    Google Scholar 

  • Black, A. W., & Taylor, P. A. (1997). The festival speech synthesis system: System documentation, Tech. Rep. HCRC/TR-83. Edinburgh: Human Communciation Research Centre, University of Edinburgh.

    Google Scholar 

  • Bliss, T., & Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. Journal of Physiology, 232, 331–356.

    Article  Google Scholar 

  • Bloom, P. (2000). How children learn the meanings of words. Cambridge: MIT Press.

    Google Scholar 

  • Bornstein, M. H., & RCote, L. (2004). Cross-linguistic analysis of vocabulary in young children: Spanish, dutch, french, hebrew, italian, korean, and american english. Child Development, 75, 1115–1139.

    Article  Google Scholar 

  • Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the general neural simulation system (2nd ed.). New York: Springer.

    Book  MATH  Google Scholar 

  • Broad, C. D. (1925). The mind and its place. Nature. (Kegan Paul, London).

    Google Scholar 

  • Bullock, T. H. (2002). Grades in neural complexity: How large is the span? Integrative and Comparative Biology, 42, 317–329.

    Google Scholar 

  • Bullock, T. H. (2006). How do brains evolve complexity? An essay. International Journal of Psychophysiology, 60, 106–109.

    Article  Google Scholar 

  • Carey, S. (1978). The child as word learner. In M. Halle, J. Bresnan, & G. Miller (Eds.), Linguistic theory and psychological reality (pp. 264–293). Cambridge: MIT Press.

    Google Scholar 

  • Carey, S., & Spelke, E. (1996). Science and core knowledge. Journal of Philosophy of Science, 63, 515–533.

    Article  Google Scholar 

  • Changizi, M.A. (2003), The Brain from 25,000 feet—high level explorations of brain complexity, perception, induction and vagueness. Springer: Berlin.

    Google Scholar 

  • Chemero, A. (2009). Radical embodied cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Chittka, L., & Niven, J. (2009). Are bigger brains better? Current Biology, 19, 995–1008.

    Article  Google Scholar 

  • Clayton, P., & Davies, P. (Eds.). (2006). The re-emergence of emergence: The emergentist hypothesis from science to religion. Oxford: Oxford University Press.

    Google Scholar 

  • Craver, C. F. (2007). Explaining the brain: mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Crozier, R. A., Wang, Y., Liu, C. H., & Bear, M. F. (2007). Deprivation-induced synaptic depression by distinct mechanisms in different layers of mouse visual cortex. In Proceedings of the Natural Academy of Science USA (vol. 104, pp. 1383–1388).

    Google Scholar 

  • Deco, G., & Rolls, E. (2004). A neurodynamical cortical model of visual attention and invariant object recognition. Vision Research, 44, 621–642.

    Article  Google Scholar 

  • Dickinson, D. K. (1984). «First impressions: Children’s knowledge of words gained from a single exposure», in. Applied Psycholinguistics, 5, 359–373.

    Article  MathSciNet  Google Scholar 

  • Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience, 27, 419–451.

    Article  Google Scholar 

  • Douglas, R. J., Martin, K. A., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.

    Article  Google Scholar 

  • Dretske, F. I. (1986). Misrepresentation. In R. Bogdan (Ed.), Belief: Form, Content and Function. Oxford: Oxford University Press.

    Google Scholar 

  • Ebbinghaus, H. (1885). Memory: A contribution to experimental psychology. New York: Dover.

    Google Scholar 

  • Elman, J. L., Bates, E., Johnson, M. H., Karmiloff-Smith, A., Parisi, D., & Plunkett, K. (1996). Rethinking innateness a connectionist perspective on development. Cambridge: MIT Press.

    Google Scholar 

  • Felleman, D. J., & van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.

    Article  Google Scholar 

  • Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2003). Visual categorization and the primate prefrontal cortex. Neurophysiology and Behavior. Journal of Neurophysiology, 88, 929–941.

    Google Scholar 

  • Fresco, N. (2014). Physical computation and cognitive science. Berlin: Springer.

    Book  Google Scholar 

  • Fuster, J. M. (2001). The prefrontal cortex–an update: Time is of the essence. Neuron, 30, 319–333.

    Article  Google Scholar 

  • Fuster, J. M. (2008). The prefrontal cortex (4th ed.). New York: Academic Press.

    Google Scholar 

  • Ganger, J., & Brent, M. R. (2004). Reexamining the vocabulary spurt. Developmental Psychology, 40, 621–632.

    Article  Google Scholar 

  • Gelder, T. V. (1995). What might cognition be, if not computation? Journal of Phylosophy, 91, 345–381.

    Google Scholar 

  • Gentner, D. (1978). On relational meaning: The acquisition of verb meaning. Cognitive Development, 49, 988–998.

    Google Scholar 

  • Gershkoff-Stowe, L., & Smith, L. B. (2004). Shape and the first hundred nouns. Child Development, 75, 1098–1114.

    Article  Google Scholar 

  • Gerstner, W. (1999). Spiking neurons. In W. Maass, & C. M. Bishop (Eds.), Pulsed Neural Networks. Cambridge: MIT Press.

    Google Scholar 

  • Grassman, S., Stracke, M., & Tomasello, M. (2009). Two year olds exclude novel objects as potential referents of novel words based on pragmatics. Cognition, 112, 488–493.

    Article  Google Scholar 

  • Haken, H. (1978). Synergetics—An Introduction, Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology, 2nd edn. Berlin: Springer.

    Google Scholar 

  • Hasker, W. (1999). The emergent self. Ithaca: Cornell University Press.

    Google Scholar 

  • Hebb, D. O. (1949). The organization of behavior. New York: Wiley.

    Google Scholar 

  • Herculano-Houzel, S. (2009). The human brain in numbers: A linearly scaled-up primate brain. Frontiers in Human Neuroscience, 3(Article 31).

    Google Scholar 

  • Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. In Proceedings of the Natural Academy of Science USA (vol. 109, pp. 10.661–10.668).

    Google Scholar 

  • Herculano-Houzel, S., de Souza, K. A., Neves, K., Porfirio, J., Messeder, D., & Feijó, L. M., et al. (2014). The elephant brain in numbers. Frontiers in Nauroanatomy, 8(Article 46).

    Google Scholar 

  • Heyes, C. (2012). Simple minds: A qualified defence of associative learning. Philosophical Transactions of the Royal Society B, 367, 2695–703.

    Google Scholar 

  • Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.

    Article  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. Journal of Physiology, 117, 500–544.

    Article  Google Scholar 

  • Hooker, C. (Ed.). (2010). Philosophy of complex systems. Handbook of the Philosophy of Science (vol. 10). North Holland, Amsterdam.

    Google Scholar 

  • Horton, J. C., & Adams, D. L. (2005). The cortical column: A structure without a function. Philosophical transactions of the Royal Society B, 360, 837–862.

    Google Scholar 

  • Hubel, D., & Wiesel, T. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591.

    Article  Google Scholar 

  • Hubel, D., & Wiesel, T. (1968). Receptive fields and functional architecture of mokey striate cortex. Journal of Physiology, 195, 215–243.

    Article  Google Scholar 

  • Huey, E. D., Krueger, F., & Grafman, J. (2006). Representations in the human prefrontal cortex. Current Directions in Psychological Science, 15, 167–171.

    Article  Google Scholar 

  • Hunt, J. J., Bosking, W. H., & Goodhill, G. J. (2011). Statistical structure of lateral connections in the primary visual cortex. Neural Systems and Circuits, 1, 1–12.

    Google Scholar 

  • Hutto, D. D., & Myin, E. (2013). Radicalizing enactivism: Basic minds without content. Cambridge: MIT Press.

    Google Scholar 

  • Ito, M. (1989). Long-term depression. Annual Review of Neuroscience, 12, 85–102.

    Article  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14, 1569–1572.

    Article  Google Scholar 

  • Kaas, J. H., Gharbawie, O. A., & Stepniewska, I. (2011). The organization and evolution of dorsal stream multisensory motor pathways in primates. Frontiers in Nauroanatomy, 5, 34.

    Google Scholar 

  • Kashimori, Y., Ichinose, Y., & Fujita, K. (2007). A functional role of interaction between IT cortex and PF cortex in visual categorization task. Neurocomputing, 70, 1813–1818.

    Article  Google Scholar 

  • Katz, L., & Shatz, C. (1996). Synaptic activity and the construction of cortical circuits. Science, 274, 1133–1138.

    Article  Google Scholar 

  • Khaligh-Razavi, S. M., & Kriegeskorte, N. (2014). Deep supervised, but not unsupervised, models may explain it cortical representation. PLoS Computational Biology, 10(e1003), 915.

    Google Scholar 

  • Kim, J. (2006). Emergence: Core ideas and issues. Synthese, 151, 547–559.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organizing formation of topologically correct feature maps. Biological Cybernetics, 43, 59–69.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1984). Self-organization and associative memory. Berlin: Springer.

    MATH  Google Scholar 

  • Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Kohonen, T., & Hari, R. (2000). Where the abstract feature maps of the brain might come from. Trends in Neurosciences, 22, 135–139.

    Article  Google Scholar 

  • Kripke, S. A. (1972). Naming and necessity. In D. Davidson & G. H. Harman (Eds.), Semantics of natural language (pp. 253–355). Dordrecht: Reidel Publishing Company.

    Chapter  Google Scholar 

  • Krubitzer, L. (1995). The organization of neocortex in mammals: are species differences really so different? Neuroscience, 8, 408–417.

    Google Scholar 

  • Levy, W., & Steward, O. (1983). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8, 791–797.

    Article  Google Scholar 

  • Lifter, K., & Bloom, L. (1989). Object knowledge and the emergence of language. Infant Behavior and Development, 12, 395–423.

    Article  Google Scholar 

  • Linde, Y., Buzo, A., & Gray, R. (1980). An algorithm for vector quantizer design. IEEE Transactions on Communications, 28, 84–95.

    Article  Google Scholar 

  • London, M., & Häusser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–5032.

    Article  Google Scholar 

  • Maçarico da Costa, N., & Martin, K. A. C. (2010). Whose cortical column would that be? Frontiers in Nauroanatomy, 4, 16.

    Google Scholar 

  • MacWhinney, B., & O’Grady, W. (Eds.). (2015). The handbook of language emergence. New York: Wiley.

    Google Scholar 

  • Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsyn, aptic APs and EPSPs. Science, 275, 213–215.

    Article  Google Scholar 

  • Mastronarde, D. N. (1983). Correlated firing of retinal ganglion cells: I. Spontaneously active inputs in X- and Y-cells. Journal of Neuroscience, 14, 409–441.

    Google Scholar 

  • Mayor, J., & Plunkett, K. (2010). A neurocomputational account of taxonomic responding and fast mapping in early word learning. Psychological Review, 117, 1–31.

    Article  Google Scholar 

  • Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: Categories, concepts and cognition. Philosophical Transactions: Biological Sciences, 357, 1123–1136.

    Google Scholar 

  • Mintz, T. H., & Gleitman, L. R. (2002). Adjectives really do modify nouns: the incremental and restricted nature of early adjective acquisition. Cognition, 84, 267–293.

    Article  Google Scholar 

  • Møller, A. R. (Ed.). (2006). Neural plasticity and disorders of the nervous system. Cambridge: Cambridge University Press.

    Google Scholar 

  • Moroz, L. L. (2009). On the independent origins of complex brains and neurons. Brain, Behavior and Evolution, 74, 177–190.

    Article  Google Scholar 

  • Mountcastle, V. (1957). Modality and topographic properties of single neurons in cats somatic sensory cortex. Journal of Neurophysiology, 20, 408–434.

    Google Scholar 

  • Murphy, G. L., & Medin, D. L. (1985). The role of theories in conceptual coherence. Psychological Review, 92, 289–316.

    Article  Google Scholar 

  • Näger, C., Storck, J., & Deco, G. (2002). Speech recognition with spiking neurons and dynamic synapses: A model motivated by the human auditory pathway. Neurocomputing, 44–46, 937–942.

    Article  MATH  Google Scholar 

  • Nair-Collins, M. (2013). Representation in biological systems: Teleofunction, etiology, and structural preservation. In L. Swan (Ed.), Origins of Mind (pp. 161–185). New York: Academic Press.

    Chapter  Google Scholar 

  • Nayar, S., & Murase, H. (1995). Visual learning and recognition of 3-D object by appearence. International Journal of Computer Vision, 14, 5–24.

    Article  Google Scholar 

  • Neher, E., & Sakmann, B. (1976). Noise analysis of drug induced voltage clamp currents in denervated frog muscle fibers. Journal of Physiology, 258, 705–729.

    Article  Google Scholar 

  • O’Brien, G., & Opie, J. (2004). Notes toward a structuralist theory of mental representation. In H. Clapin, P. Staines, & P. Slezak (Eds.), Representation in Mind—New Approaches to Mental Representation. Amsterdam: Elsevier.

    Google Scholar 

  • Pereira, A. F., Smith, L. B., & Yu, C. (2014). A bottom-up view of toddler word learning. Psychonomic Bulletin & Review, 2, 178–185.

    Article  Google Scholar 

  • Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Plebe, A. (2007a). A model of angle selectivity development in visual area V2. Neurocomputing, 70, 2060–2066.

    Article  Google Scholar 

  • Plebe, A. (2007b). A neural model of object naming. Enformatika, 2, 130–135.

    Google Scholar 

  • Plebe, A. (2012). A model of the response of visual area V2 to combinations of orientations. Network: Computation in Neural Systems, 23, 105–122.

    Google Scholar 

  • Plebe, A., & Anile, M. (2001). A neural-network-based approach to the double traveling salesman problem. Neural Computation, 14(2), 437–471.

    Article  MATH  Google Scholar 

  • Plebe, A., & De La Cruz, V. M. (2016). Neurosemantics—neural processes and the construction of language meaning. Berlin: Springer.

    Google Scholar 

  • Plebe, A., & Domenella, R. G. (2005). The emergence of visual object recognition. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrony (Eds.), Artificial Neural Networks—ICANN 2005 15th International Conference, Warsaw (pp. 507–512). Berlin: Springer.

    Google Scholar 

  • Plebe, A., & Domenella, R. G. (2006). Early development of visual recognition. BioSystems, 86, 63–74.

    Article  Google Scholar 

  • Plebe, A., & Domenella, R. G. (2007). Object recognition by artificial cortical maps. Neural Networks, 20, 763–780.

    Article  MATH  Google Scholar 

  • Plebe, A., De La Cruz, V. M., & Mazzone, M. (2007). Artificial learners of objects and names. In Y. Demiris, B. Scassellati, & D. Mareschal (Eds.), Proceedings of the 6th International Conference on Development and Learning (pp. 300–305). IEEE.

    Google Scholar 

  • Plebe, A., Mazzone, M., & De La Cruz, V. M. (2010). First words learning: A cortical model. Cognitive Computation, 2, 217–229.

    Article  Google Scholar 

  • Plebe, A., Mazzone, M., & De La Cruz, V. M. (2011). A biologically inspired neural model of vision-language integration. Neural Network World, 21, 227–249.

    Article  Google Scholar 

  • Plebe, A., De La Cruz, V. M., & Mazzone, M. (2013). In learning nouns and adjectives remembering matters: A cortical model. In A. Villavincencio, T. Poibeau, A. Korhonen, & A. Alishahi (Eds.), Cognitive Aspects of Computational Language Acquisition (pp. 105–129). Berlin: Springer.

    Chapter  Google Scholar 

  • Plunkett, K. (1993). Lexical segmentation and vocabulary growth in early language acquisition. Journal of Child Language, 20, 43–60.

    Article  Google Scholar 

  • Prigogine, I. (1961). Introduction to thermodynamics of irreversible processes. New York: Interscience.

    MATH  Google Scholar 

  • Putnam, H. (1975). The meaning of “meaning”. In Mind, Language and Reality (vol. 2). Cambridge: MIT Press.

    Google Scholar 

  • Rakic, P. (2008). Confusing cortical columns. In Proceedings of the Natural Academy of Science USA (vol. 34, pp. 12.099–12.100).

    Google Scholar 

  • Ramón y Cajal, S. (1899). Textura del sistema nervioso del hombre y de los vertebrados, Vol I, Imprenta y Librería de Nicolás Moya, Madrid, english translation by P. Pasik and T. Pasik, 1997. Berlin: Springer.

    Google Scholar 

  • Ramón y Cajal, S. (1906). In J. DeFelipe, & E. G. Jones (Eds.), Cajal on the Cerebral Cortex: an Annotated Translation of the Complete Writings, Oxford: Oxford University Press, 1988.

    Google Scholar 

  • Ramsey, W. M. (2007). Representation reconsidered. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Regier, T. (2005). The emergence of words: Attentional learning in form and meaning. Cognitive Science, 29, 819–865.

    Article  Google Scholar 

  • Ritter, H., Martinetz, T., & Schulten, K. (1992). Neural computation and self-organizing maps. Reading: Addison Wesley.

    MATH  Google Scholar 

  • Rogers, T. T., & McClelland, J. L. (2006). Semantic cognition—a parallel distributed processing approach. Cambridge: MIT Press.

    Google Scholar 

  • Rolls, E. T., & Stringer, S. M. (2006). Invariant visual object recognition: A model, with lighting invariance. Journal of Physiology Paris, 100, 43–62.

    Article  Google Scholar 

  • Roth, G., & Dicke, U. (2013). Evolution of nervous systems and brains. In G. Galizia & P. M. Lledo (Eds.), Neurosciences—from molecule to behavior (pp. 19–45). Berlin: Springer.

    Chapter  Google Scholar 

  • Ruelle, D., & Takens, F. (1971). On the nature of turbulence. Communications in Mathematical Physics, 20, 167–192.

    Article  MathSciNet  MATH  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (Eds.). (1986). Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge: MIT Press.

    Google Scholar 

  • Ryder, D. (2009a). Problems of representation I: nature and role. In Symons and Calvo (Eds.), (pp. 233–250).

    Google Scholar 

  • Ryder, D. (2009b). Problems of representation II: Naturalizing content. In Symons and Calvo (Eds.), (pp. 251–279).

    Google Scholar 

  • Sandhofer, C. M., & Smith, L. B. (2001). Why children learn color and size words so differently: Evidence from adults’ learning of artificial terms. Journal of Experimental Psychology, 130, 600–620.

    Article  Google Scholar 

  • Scott, A. (Ed.). (2004). Encyclopedia of nonlinear science. London: Routledge.

    MATH  Google Scholar 

  • Seeley, T. D. (2003). What studies of communication have revealed about the minds of worker honey bees. In T. Kikuchi, N. Azuma, & S. Higashi (Eds.), Genes, behaviors and evolution of social insects (pp. 21–33). Sapporo: Hokkaido University Press.

    Google Scholar 

  • Shagrir, O. (2012). Structural representations and the brain. British Journal for the Philosophy of Science, 63, 519–545.

    Article  Google Scholar 

  • Shanks, D. R. (1995). The psychology of associative learning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Shepherd, G. M. (1988). A basic circuit for cortical organization. In M. S. Gazzaniga (Ed.), Perspectives on Memory Research (pp. 93–134). Cambridge: MIT Press.

    Google Scholar 

  • Shumway, C. A. (2010). The evolution of complex brains and behaviors in african cichlid fishes. Current Zoology, 56, 144–156.

    Google Scholar 

  • Sidiropoulou, K., Pissadaki, E. K., & Poirazi, P. (2006). Inside the brain of a neuron. EMBO Reports, 7, 886–892.

    Article  Google Scholar 

  • Silberstein, M. (2006). In defence of ontological emergence and mental causation. In Clayton and Davies (Eds.), (pp. 203–226).

    Google Scholar 

  • Sirosh, J., & Miikkulainen, R. (1997). Topographic receptive fields and patterned lateral interaction in a self-organizing model of the primary visual cortex. Neural Computation, 9, 577–594.

    Article  Google Scholar 

  • Smith, L. B. (2001). How domain-general processes may create domain-specific biases. In M. Bowerman, & S. Levinson (Eds.), Language Acquisition and Conceptual Development. Cambridge: Cambridge University Press.

    Google Scholar 

  • Sprevak, M. (2011). William m. ramsey, representation reconsidered. British Journal for the Philosophy of Science, 62, 669–675.

    Article  Google Scholar 

  • Striedter, G. F. (2003). Principles of brain evolution. Sunderland: Sinauer Associated.

    Google Scholar 

  • Symons, J., & Calvo, P. (Eds.). (2009). The Routledge Companion to Philosophy of Psychology. London: Routledge.

    Google Scholar 

  • Taylor, N. R., Hartley, M., & Taylor, J. G. (2005). Coding of objects in low-level visual cortical areas. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrony (Eds.), Artificial Neural Networks, ICANN ’05, 15th International Conference Proceedings (pp. 57–63). Berlin: Springer.

    Google Scholar 

  • Thivierge, J. P., & Marcus, G. F. (2007). The topographic brain: From neural connectivity to cognition. Trends in Neuroscience, 30, 251–259.

    Google Scholar 

  • Thompson, I. (1997). Cortical development: A role for spontaneous activity? Current Biology, 7, 324–326.

    Article  Google Scholar 

  • Thorndike, E. (1892). Animal intelligence: An experimental study of the associative processes. Animals Psychological Monographs, 2, 192–205.

    Google Scholar 

  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Tomasello, M. (2003). Constructing a language: A usage-based theory of language acquisition. Cambridge: Harvard University Press.

    Google Scholar 

  • Turrigiano, G. G., & Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nature Reviews Neuroscience, 391, 892–896.

    Google Scholar 

  • Vallar, G., & Shallice, T. (Eds.). (2007). Neuropsychological Impairments of Short-Term Memory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Vanduffel, W., Tootell, R. B., Schoups, A. A., & Orban, G. A. (2002). The organization of orientation selectivity throughout the macaque visual cortex. Cerebral Cortex, 12, 647–662.

    Article  Google Scholar 

  • Verkindt, C., Bertrand, O., Echallier, F., & Pernier, J. (1995). Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalography and Clinical Neurophisiology, 96, 143–156.

    Google Scholar 

  • Volkmer, M. (2004). A pulsed neural network model of spectro-temporal receptive fileds and population coding in auditory cortex. Neural Computing, 3, 177–193.

    MathSciNet  Google Scholar 

  • von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in the striate cortex. Kybernetic, 14, 85–100.

    Google Scholar 

  • von der Malsburg, C. (1995). Network self-organization in the ontogenesis of the mammalian visual system. In S. F. Zornetzer, J. Davis, C. Lau, & T. McKenna (Eds.), An Introduction to Neural and Electronic Networks (pp. 447–462) (2nd Edn.). New York: Academic Press.

    Google Scholar 

  • Wallis, G., & Rolls, E. (1997). Invariant face and object recognition in the visual system. Progress in Neurobiology, 51, 167–194.

    Article  Google Scholar 

  • Wiesel, T., & Hubel, D. (1965). Binocular interaction in striate cortex of kittens reared with artificial squint. Journal of Neurophysiology, 28, 1041–1059.

    Google Scholar 

  • Willshaw, D. J., & von der Malsburg, C. (1976). How patterned neural connections can be set up by self-organization. Proceedings of the Royal Society of London, B194, 431–445.

    Article  Google Scholar 

  • Yu, C., & Smith, L. B. (2012). Embodied attention and word learning by toddlers. Cognition, 125, 244–262.

    Article  Google Scholar 

  • Yu, H., Farley, B. J., Jin, D. Z., & Sur, M. (2005). The coordinated mapping of visual space and response features in visual cortex. Neuron, 47, 267–280.

    Article  Google Scholar 

  • Zakon, H. H. (2012). Adaptive evolution of voltage-gated sodium channels: The first 800 million years. In Proceedings of the Natural Academy of Science USA, 109, 10.619–10.625.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessio Plebe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plebe, A., De La Cruz, V.M. (2017). Language and Brain Complexity. In: La Mantia, F., Licata, I., Perconti, P. (eds) Language in Complexity. Lecture Notes in Morphogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-29483-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29483-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29481-0

  • Online ISBN: 978-3-319-29483-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics