Skip to main content

Conclusions and Future Work

  • Chapter
  • First Online:
Advances in Heat Transfer Enhancement
  • 1313 Accesses

Abstract

Increase in heat duty and demanding requirements on clean and sustainable technology are constantly moving the developments of heat transfer enhancement technology. This chapter presents an up-to-date overview of heat transfer enhancement techniques for two-phase flow (e.g., boiling and condensation) and mainly emphasizes those either commercially used enhancement techniques or the most recent enhancement methods. A special focus is on the enhancement technologies with a relatively low pressure drop penalty. Passive enhancement techniques such as surface coating, roughened and finned surfaces, insert devices, curved geometries and additives are highlighted. Several recent enhancement techniques, e.g., nanoscale surface coatings, microfin tubes and nanoparticle additives, are outlined for their promising potential in enhancing phase-change heat transfer, especially nanoscale surface coatings. Microchannels which can be considered as one of the promising passive enhancement techniques, are not detailed in this chapter as many aspects of microchannels have been covered in the recent literature. Among active enhancement techniques, electrohydrodynamic (EHD) phenomenon and jet impingement are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Akira Y, Hiroshi M (1988) Augmentation of convective and boiling heat transfer by applying an electro-hydrodynamical liquid jet. Int J Heat Mass Transf 31(2):407–417

    Article  Google Scholar 

  • Aly NH, Bedrose SD (1995) Enhanced film condensation of steam on spirally fluted tubes. Desalination 101(3):295–301

    Article  Google Scholar 

  • Ammerman CN, You SM (2001) Enhancing small-channel convective boiling performance using a microporous surface coating. ASME J Heat Transf 123(5):976–983

    Article  Google Scholar 

  • Attinger D, Frankiewicz C, Betz AR et al (2014) Surface engineering for phase change heat transfer: a review. MRS Energy Sustain A Rev J 1:E4

    Article  Google Scholar 

  • Bergles AE (1997) Heat transfer enhancement – the encouragement and accommodation of high heat fluxes. ASME J Heat Transf 119(1):8–19

    Article  Google Scholar 

  • Bergles AE (2002) ExHFT for fourth generation heat transfer technology. Exp Therm Fluid Sci 26(2):335–344

    Article  Google Scholar 

  • Bi J, Vafai K, Christopher DM (2015) Heat transfer characteristics and CHF prediction in nanofluid boiling. Int J Heat Mass Transf 80:256–265

    Article  Google Scholar 

  • Bocquet L, Lauga E (2011) A smooth future? Nat Mater 10(5):334–337

    Article  Google Scholar 

  • Boreyko JB, Chen CH (2009) Self-propelled dropwise condensate on superhydrophobic surfaces. Phys Rev Lett 103(18):184501

    Article  Google Scholar 

  • Bryan JE, Seyed-Yagoobi J (2001) Influence of flow regime, heat flux, and mass flux on electrohydrodynamically enhanced convective boiling. ASME J Heat Transf 123(2):355–367

    Article  Google Scholar 

  • Cardenas R, Narayanan V (2012) Heat transfer characteristics of submerged jet impingement boiling of saturated FC-72. Int J Heat Mass Transf 55(15):4217–4231

    Article  Google Scholar 

  • Celata GP, Cumo M, Mariani A (1994) Enhancement of CHF water subcooled flow boiling in tubes using helically coiled wires. Int J Heat Mass Transf 37(1):53–67

    Article  Google Scholar 

  • Chang JY, You SM (1997) Boiling heat transfer phenomena from microporous and porous surfaces in saturated FC-72. Int J Heat Mass Transf 40(18):4437–4447

    Article  Google Scholar 

  • Chen X, Wu J, Ma R et al (2011) Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv Funct Mater 21(24):4617–4623

    Article  Google Scholar 

  • Cheng P, Wu HY, Hong FJ (2007) Phase-change heat transfer in microsystems. ASME J Heat Transf 129(2):101–108

    Article  MathSciNet  Google Scholar 

  • Cheng J, Vandadi A, Chen CL (2012) Condensation heat transfer on two-tier superhydrophobic surfaces. Appl Phys Lett 101(13):131909

    Article  Google Scholar 

  • Cheung K, Ohadi MM, Dessiatoun SV (1999) EHD-assisted external condensation of R-134a on smooth horizontal and vertical tubes. Int J Heat Mass Transf 42(10):1747–1755

    Article  Google Scholar 

  • Cotton J, Shoukri M, Chang JS (2001) Oscillatory entrained droplet EHD two-phase flow. ASME J Heat Transf 123(4):622–622

    Article  Google Scholar 

  • Cotton J, Robinson AJ, Shoukri M et al (2005) A two-phase flow pattern map for annular channels under a DC applied voltage and the application to electrohydrodynamic convective boiling analysis. Int J Heat Mass Transf 48(25):5563–5579

    Article  MATH  Google Scholar 

  • Daniel S, Chaudhury MK, Chen JC (2001) Fast drop movements resulting from the phase change on a gradient surface. Science 291(5504):633–636

    Article  Google Scholar 

  • Dawidowicz B, CieÅ›liÅ„ski JT (2012) Heat transfer and pressure drop during flow boiling of pure refrigerants and refrigerant/oil mixtures in tube with porous coating. Int J Heat Mass Transf 55(9):2549–2558

    Article  Google Scholar 

  • Djordjevic E, Kabelac S (2008) Flow boiling of R134a and ammonia in a plate heat exchanger. Int J Heat Mass Transf 51(25):6235–6242

    Article  Google Scholar 

  • Ekkad SV, Kontrovitz D (2002) Jet impingement heat transfer on dimpled target surfaces. Int J Heat Fluid Flow 23:22–28

    Article  Google Scholar 

  • Feng Z, Wu Z, Li W, Sundén B (2016) Effect of surfactant on flow boiling heat transfer of ethylene glycol/water mixtures in a mini-tube. Heat Transfer Eng. doi:10.1080/01457632.2015.1111112

    Google Scholar 

  • Furberg R, Palm B, Li S et al (2009) The use of a nano-and microporous surface layer to enhance boiling in a plate heat exchanger. ASME J Heat Transf 131:101010

    Article  Google Scholar 

  • Garimella S, Richards DE, Christensen RN (1988) Experimental investigation of heat transfer in coiled annular ducts. ASME J Heat Transf 110(2):329–336

    Article  Google Scholar 

  • Ghiaasiaan SM (2008) Two-phase flow: boiling and condensation in convective and miniature systems. Cambridge University Press, New York

    Google Scholar 

  • Gregorig R (1954) Hautcondensation an feingewelten Oberflachen bei Beruksichtigung der Oberflachenspannungen. Z Angew Math Phys 5:36–49

    Article  MATH  Google Scholar 

  • Guo SP, Wu Z, Li W et al (2015) Condensation and evaporation heat transfer characteristics in horizontal smooth, herringbone and enhanced surface EHT tubes. Int J Heat Mass Transf 85:281–291

    Article  Google Scholar 

  • Hanlon MA, Ma HB (2003) Evaporation heat transfer in sintered porous media. ASME J Heat Transf 125(4):644–652

    Article  Google Scholar 

  • Hata K, Masuzaki S (2011) Heat transfer and critical heat flux of subcooled water flow boiling in a SUS304-tube with twisted-tape insert. ASME J Therm Sci Eng Appl 3(1):012001

    Article  Google Scholar 

  • Henderson K, Park YG, Liu L et al (2010) Flow-boiling heat transfer of R-134a-based nanofluids in a horizontal tube. Int J Heat Mass Transf 53(5):944–951

    Article  Google Scholar 

  • Hsieh YY, Lin TF (2002) Saturated flow boiling heat transfer and pressure drop of refrigerant R-410A in a vertical plate heat exchanger. Int J Heat Mass Transf 45(5):1033–1044

    Article  Google Scholar 

  • Hsieh SS, Jang KJ, Tsai HH (2003) Evaporative characteristics of R-134a and R-600a in horizontal tubes with perforated strip-type inserts. Int J Heat Mass Transf 46(10):1861–1872

    Article  Google Scholar 

  • Hsu YY (1962) On the size range of active nucleation cavities on a heating surface. ASME J Heat Transf 84(3):207–213

    Article  Google Scholar 

  • Kandlikar SG (2010) Scale effects on flow boiling heat transfer in microchannels: a fundamental perspective. Int J Therm Sci 49:1073–1085

    Article  Google Scholar 

  • Kandlikar SG (2012) History, advances, and challenges in liquid flow and flow boiling heat transfer in microchannels: a critical review. ASME J Heat Transf 134(3):034001

    Article  Google Scholar 

  • Kang SH, Wu N, Grinthal A et al (2011) Meniscus lithography: evaporation-induced self-organization of pillar arrays into Moiré patterns. Phys Rev Lett 107(17):177802

    Article  Google Scholar 

  • Kedzierski MA, Goncalves JM (1999) Horizontal convective condensation of alternative refrigerants within a micro-fin tube. J Enhanc Heat Transf 6(2–4):161–178

    Article  Google Scholar 

  • Khanikar V, Mudawar I, Fisher T (2009) Effects of carbon nanotube coating on flow boiling in a micro-channel. Int J Heat Mass Transf 52(15):3805–3817

    Article  Google Scholar 

  • Kim KJ, Lefsaker AM, Razani A et al (2001) The effective use of heat transfer additives for steam condensation. Appl Therm Eng 21(18):1863–1874

    Article  Google Scholar 

  • Kim SJ, McKrell T, Buongiorno J et al (2008) Alumina nanoparticles enhance the flow boiling critical heat flux of water at low pressure. ASME J Heat Transf 130(4):044501

    Article  Google Scholar 

  • Kim DK, Kim SJ, Bae JK (2009) Comparison of thermal performances of plate-fin and pin-fin heat sinks subject to an impinging flow. Int J Heat Mass Transf 52:3510–3517

    Article  MATH  Google Scholar 

  • Kim H, Ahn HS, Kim MH (2010a) On the mechanism of pool boiling critical heat flux enhancement in nanofluids. ASME J Heat Transf 132(6):061501

    Article  Google Scholar 

  • Kim SJ, McKrell T, Buongiorno J et al (2010b) Subcooled flow boiling heat transfer of dilute alumina, zinc oxide, and diamond nanofluids at atmospheric pressure. Nucl Eng Des 240(5):1186–1194

    Article  Google Scholar 

  • Kousalya AS, Hunter CN, Putnam SA et al (2012) Photonically enhanced flow boiling in a channel coated with carbon nanotubes. Appl Phys Lett 100(7):071601

    Article  Google Scholar 

  • Krishna KH, Ganapathy H, Sateesh G et al (2011) Pool boiling characteristics of metallic nanofluids. ASME J Heat Transf 133:111501

    Article  Google Scholar 

  • Kumar CS, Suresh S, Yang L et al (2014) Flow boiling heat transfer enhancement using carbon nanotube coatings. Appl Therm Eng 65(1):166–175

    Article  Google Scholar 

  • Kumar CS, Suresh S, Praveen AS et al (2016) Effect of surfactant addition on hydrophilicity of ZnO-Al2O3 composite and enhancement of flow boiling heat transfer. Exp Therm Fluid Sci 70:325–334

    Article  Google Scholar 

  • Kuo WS, Lie YM, Hsieh YY et al (2005) Condensation heat transfer and pressure drop of refrigerant R-410A flow in a vertical plate heat exchanger. Int J Heat Mass Transf 48(25):5205–5220

    Article  Google Scholar 

  • Lee J, Mudawar I (2007) Assessment of the effectiveness of nanofluids for single-phase and two-phase heat transfer in micro-channels. Int J Heat Mass Transf 50(3):452–463

    Article  Google Scholar 

  • Lee DY, Vafai K (1999) Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. Int J Heat Mass Transf 42:1555–1568

    Article  MATH  Google Scholar 

  • Lee H, Li S, Hwang Y et al (2013) Experimental investigations on flow boiling heat transfer in plate heat exchanger at low mass flux condition. Appl Therm Eng 61(2):408–415

    Article  Google Scholar 

  • Li C, Peterson GP (2007) Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. ASME J Heat Transf 129:1465–1475

    Article  Google Scholar 

  • Li W, Wu Z (2011) Generalized adiabatic pressure drop correlations in evaporative micro/mini-channels. Exp Therm Fluid Sci 35(6):866–872

    Article  Google Scholar 

  • Li GQ, Wu Z, Li W et al (2012) Experimental investigation of condensation in micro-fin tubes of different geometries. Exp Therm Fluid Sci 37:19–28

    Article  Google Scholar 

  • Liebenberg L, Meyer JP (2007) In-tube passive heat transfer enhancement in the process industry. Appl Therm Eng 27(16):2713–2726

    Article  Google Scholar 

  • Liter SG, Kaviany M (2001) Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment. Int J Heat Mass Transf 44(22):4287–4311

    Article  Google Scholar 

  • Liu D, Yu L (2011) Single-phase thermal transport of nanofluids in a minichannel. ASME J Heat Transf 133(3):031009

    Article  Google Scholar 

  • Liu TQ, Sun W, Sun XY et al (2012) Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf A Physicochem Eng Asp 414:366–374

    Article  Google Scholar 

  • Longo GA, Zilio C, Righetti G et al (2014) Condensation of the low GWP refrigerant HFO1234ze (E) inside a Brazed Plate Heat Exchanger. Int J Refrig 38:250–259

    Article  Google Scholar 

  • Lopina RF, Bergles AE (1973) Subcooled boiling of water in tape-generated swirl flow. ASME J Heat Transf 95(2):281–283

    Article  Google Scholar 

  • Ma X, Briggs A, Rose JW (2004) Heat transfer and pressure drop characteristics for condensation of R113 in a vertical micro-finned tube with wire insert. Int Commun Heat Mass Transfer 31(5):619–627

    Article  Google Scholar 

  • Ma A, Wei J, Yuan M et al (2009) Enhanced flow boiling heat transfer of FC-72 on micro-pin-finned surfaces. Int J Heat Mass Transf 52(13):2925–2931

    Article  Google Scholar 

  • Manglik RM, Bergles AE (2013) Characterization of twisted-tape-induced helical swirl flows for enhancement of forced convective heat transfer in single-phase and two-phase flows. ASME J Therm Sci Eng Appl 5(2):021010

    Article  Google Scholar 

  • Marto PJ (1986) Recent progress in enhancing film condensation heat transfer on horizontal tubes. Heat Transfer Eng 7(3–4):53–63

    Article  Google Scholar 

  • Melcher CL (1981) Thermoluminescence of meteorites and their terrestrial ages. Geochim Cosmochim Acta 45(5):615–626

    Article  Google Scholar 

  • Miljkovic N, Wang EN (2013) Condensation heat transfer on superhydrophobic surfaces. MRS Bull 38(5):397–406

    Article  Google Scholar 

  • Miljkovic N, Enright R, Wang EN (2013) Modeling and optimization of superhydrophobic condensation. ASME J Heat Transf 135(11):111004

    Article  Google Scholar 

  • Mozafari M, Akhavan-Behabadi MA, Qobadi-Arfaee H et al (2015) Experimental study on condensation flow patterns inside inclined U-bend tubes. Exp Therm Fluid Sci 68:276–287

    Article  Google Scholar 

  • Narhe RD, Khandkar MD, Shelke PB et al (2009) Condensation-induced jumping water drops. Phys Rev E 80(3):031604

    Article  Google Scholar 

  • Ndao S, Peles Y, Jensen MK (2012) Experimental investigation of flow boiling heat transfer of jet impingement on smooth and micro structured surfaces. Int J Heat Mass Transf 55(19):5093–5101

    Article  Google Scholar 

  • Nnanna AG (2007) Experimental model of temperature-driven nanofluid. ASME J Heat Transf 129(6):697–704

    Article  Google Scholar 

  • Owhadi A, Bell KJ, Crain B (1968) Forced convection boiling inside helically-coiled tubes. Int J Heat Mass Transf 11(12):1779–1793

    Article  Google Scholar 

  • Patankar NA (2010) Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6(8):1613–1620

    Article  MathSciNet  Google Scholar 

  • Peng H, Ding G, Hu H (2011) Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid. Exp Therm Fluid Sci 35(6):960–970

    Article  Google Scholar 

  • Qu ZG, Xu ZG, Zhao CY et al (2012) Experimental study of pool boiling heat transfer on horizontal metallic foam surface with crossing and single-directional V-shaped groove in saturated water. Int J Multiphase Flow 41:44–55

    Article  Google Scholar 

  • Rainey KN, Li G, You SM (2001) Flow boiling heat transfer from plain and microporous coated surfaces in subcooled FC-72. ASME J Heat Transf 123(5):918–925

    Article  Google Scholar 

  • Rao Bobbili PR, Sundén B (2008) Steam condensation in parallel channels of plate heat exchangers – an experimental investigation. Heat Transfer Res 39(3):197–210

    Article  Google Scholar 

  • Rao Bobbili PR, Sundén B, Das SK (2006) Thermal analysis of plate condensers in presence of flow maldistribution. Int J Heat Mass Transf 49(25):4966–4977

    Article  MATH  Google Scholar 

  • Reay D, Ramshaw C, Harvey A (2013) Process intensification: engineering for efficiency, sustainability and flexibility. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Rohsenow WM (1998) Handbook of heat transfer, vol 3. McGraw-Hill, New York

    MATH  Google Scholar 

  • Rose JW (2004) Surface tension effects and enhancement of condensation heat transfer. Chem Eng Res Des 82(4):419–429

    Article  Google Scholar 

  • Rykaczewski K, Scott JHJ (2011) Methodology for imaging nano-to-microscale water condensation dynamics on complex nanostructures. ACS Nano 5:5962–5968

    Article  Google Scholar 

  • Sadek H, Robinson AJ, Cotton JS et al (2006) Electrohydrodynamic enhancement of in-tube convective condensation heat transfer. Int J Heat Mass Transf 49(9):1647–1657

    Article  Google Scholar 

  • Santini L, Cioncolini A, Butel MT et al (2016) Flow boiling heat transfer in a helically coiled steam generator for nuclear power applications. Int J Heat Mass Transf 92:91–99

    Article  Google Scholar 

  • Sarwar MS, Jeong YH, Chang SH (2007) Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf 50(17):3649–3657

    Article  Google Scholar 

  • Seyed-Yagoobi J, Bryan JE (1999) Enhancement of heat transfer and mass transport in single-phase and two-phase flows with electrohydrodynamics. Adv Heat Tran 33:95–186

    Article  Google Scholar 

  • Singh N, Sathyamurthy V, Peterson W et al (2010) Flow boiling enhancement on a horizontal heater using carbon nanotube coatings. Int J Heat Fluid Flow 31(2):201–207

    Article  Google Scholar 

  • Sterner D, Sundén B (2006) Performance of plate heat exchangers for evaporation of ammonia. Heat Transfer Eng 27(5):45–55

    Article  Google Scholar 

  • Straub J (1994) The role of surface tension for two-phase heat and mass transfer in the absence of gravity. Exp Therm Fluid Sci 9(3):253–273

    Article  MathSciNet  Google Scholar 

  • Sundén B (2012) Introduction to heat transfer. WIT Press, Southampton

    MATH  Google Scholar 

  • Sundén B, Wu Z (2015) Advanced heat exchangers for clean and sustainable technology. In: Yan J (ed) Handbook of clean energy systems. Wiley, New York

    Google Scholar 

  • Szczukiewicz S, Magnini M, Thome JR (2014) Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling. Int J Multiphase Flow 59:84–101

    Article  Google Scholar 

  • Thome JR (1990) Enhanced boiling heat transfer. Hemisphere, New York

    Google Scholar 

  • Thome JR, Dupont V, Jacobi AM (2004) Heat transfer model for evaporation in microchannels. Part I: presentation of the model. Int J Heat Mass Transf 47(14):3375–3385

    Article  MATH  Google Scholar 

  • Timm W, Weinzierl K, Leipertz A (2003) Heat transfer in subcooled jet impingement boiling at high wall temperatures. Int J Heat Mass Transf 46(8):1385–1393

    Article  MATH  Google Scholar 

  • Ujereh S, Fisher T, Mudawar I (2007) Effects of carbon nanotube arrays on nucleate pool boiling. Int J Heat Mass Transf 50(19):4023–4038

    Article  Google Scholar 

  • Vafaei S, Wen D (2010) Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. ASME J Heat Transf 132(10):102404

    Article  Google Scholar 

  • Wang CH, Dhir VK (1993) Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. ASME J Heat Transf 115:659–669

    Article  Google Scholar 

  • Wang LK, Sunden B, Yang QS (1999) Pressure drop analysis of steam condensation in a plate heat exchanger. Heat Transfer Eng 20(1):71–77

    Article  Google Scholar 

  • Wang H, Garimella SV, Murthy JY (2007a) Characteristics of an evaporating thin film in a microchannel. Int J Heat Mass Transf 50(19):3933–3942

    Article  MATH  Google Scholar 

  • Wang LK, Sunden B, Manglik RM (2007b) Plate heat exchangers: design, applications and performance. WIT Press, Southampton

    Google Scholar 

  • Wanniarachchi AS, Marto PJ, Rose JW (1986) Film condensation of steam on horizontal finned tubes: effect of fin spacing. ASME J Heat Transf 108(4):960–966

    Article  Google Scholar 

  • Webb RL (1983) Nucleate boiling on porous coated surfaces. Heat Transfer Eng 4(3–4):71–82

    Article  Google Scholar 

  • Webb RL (2004) Donald Q. Kern Lecture Award Paper: Odyssey of the enhanced boiling surface. ASME J Heat Transf 126(6):1051–1059

    Article  Google Scholar 

  • Webb RL, Kim NH (2005) Principles of enhanced heat transfer. Taylor & Francis, New York

    Google Scholar 

  • Wellsandt S, Vamling L (2005) Prediction method for flow boiling heat transfer in a herringbone microfin tube. Int J Refrig 28(6):912–920

    Article  Google Scholar 

  • Wörner M (2003) A compact introduction to the numerical modeling of multiphase flows. Forschungszentrum, Karlsruhe

    Google Scholar 

  • Wu Z, Sundén B (2014) On further enhancement of single-phase and flow boiling heat transfer in micro/minichannels. Renew Sustain Energy Rev 40:11–27

    Article  Google Scholar 

  • Wu Z, Sundén B (2015a) Frictional pressure drop correlations for single-phase flow, condensation, and evaporation in microfin tubes. ASME J Heat Transf 138(2):022901

    Article  Google Scholar 

  • Wu Z, Sundén B (2015b) Flow-pattern based heat transfer correlations for stable flow boiling in micro/minichannels. ASME J Heat Transf 138:031501

    Article  Google Scholar 

  • Wu Z, Sundén B (2015c) Heat transfer correlations for elongated bubbly flow in flow boiling micro/minichannels. Heat Transfer Eng. doi:10.1080/01457632.2015.1098269

    Google Scholar 

  • Wu Z, Sundén B, Li W et al (2013a) Evaporative annular flow in micro/minichannels: a simple heat transfer model. ASME J Therm Sci Eng Appl 5:031009

    Article  Google Scholar 

  • Wu Z, Wu Y, Sundén B et al (2013b) Convective vaporization in micro-fin tubes of different geometries. Exp Therm Fluid Sci 44:398–408

    Article  Google Scholar 

  • Wu Z, Sundén B, Wang L et al (2014) Convective condensation inside horizontal smooth and microfin tubes. ASME J Heat Transf 136(5):051504

    Article  Google Scholar 

  • Wu Z, Sundén B, Wadekar VV et al (2015) Heat transfer correlations for single-phase flow, condensation, and boiling in microfin tubes. Heat Transfer Eng 36(6):582–595

    Article  Google Scholar 

  • Xu L, Xu J (2012) Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel. Int J Heat Mass Transf 55(21):5673–5686

    Article  Google Scholar 

  • Yang XF, Liu ZH (2012) Flow boiling heat transfer in the evaporator of a loop thermosyphon operating with CuO based aqueous nanofluid. Int J Heat Mass Transf 55(25):7375–7384

    Article  Google Scholar 

  • Yang CY, Webb RL (1997) A predictive model for condensation in small hydraulic diameter tubes having axial micro-fins. ASME J Heat Transf 119(4):776–782

    Article  Google Scholar 

  • Yarin LP, Mosyak A, Hetsroni G (2009) Fluid flow. heat transfer and boiling in micro-channels. Springer, Berlin

    Book  MATH  Google Scholar 

  • Yu L, Sur A, Liu D (2015) Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel. ASME J Heat Transf 137(5):051502

    Article  Google Scholar 

  • Zhang Y, Wei J, Xue Y et al (2014) Bubble dynamics in nucleate pool boiling on micro-pin-finned surfaces in microgravity. Appl Therm Eng 70(1):172–182

    Article  Google Scholar 

  • Zhao L, Guo L, Bai B et al (2003) Convective boiling heat transfer and two-phase flow characteristics inside a small horizontal helically coiled tubing once-through steam generator. Int J Heat Mass Transf 46(25):4779–4788

    Article  Google Scholar 

  • Zhou DW, Ma CF (2004) Local jet impingement boiling heat transfer with R113. Heat Mass Transf 40(6–7):539–549

    MathSciNet  Google Scholar 

Download references

Acknowledgement

Financial support from the Swedish National Research Council and the Swedish Energy Agency is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Saha, S.K., Tiwari, M., Sundén, B., Wu, Z. (2016). Conclusions and Future Work. In: Advances in Heat Transfer Enhancement. Springer, Cham. https://doi.org/10.1007/978-3-319-29480-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29480-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29478-0

  • Online ISBN: 978-3-319-29480-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics