Skip to main content

Part of the book series: Springer Laboratory ((SPLABORATORY))

  • 1473 Accesses

Abstract

In this chapter, basic experimental aspects of the use of an atomic force microscope for the acquisition of force–distance curves and the study of mechanical properties of samples are discussed.

In the first two sections, calibration issues (sensitivity, spring constant of the cantilever and radius of the cantilever tip) are treated; also, the colloidal probe technique is briefly presented, and advantages and drawbacks are discussed.

In Sect. 2.3 fundamental aspects of data analysis for force–distance curves are described. Moreover, the most common artefacts affecting the acquisition and the analysis of force–distance curves and in particular of deformation–force curves are listed.

Section 2.4 summarizes in table form the sequence of work steps of an experiment aimed to the measurement of mechanical properties of the sample through force–distance curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Meyer G, Amer NM (1988) Novel optical approach to atomic force microscopy. Appl Phys Lett 53:1045–1047

    Article  Google Scholar 

  2. Butt H-J, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1–152

    Article  CAS  Google Scholar 

  3. Neumeister JM, Ducker WA (1994) Lateral, normal, and longitudinal spring constants of atomic-force microscopy cantilevers. Rev Sci Instrum 65:2527–2531

    Article  Google Scholar 

  4. Gibson CT, Watson GS, Myhra S (1996) Determination of the spring constants of probes for force microscopy/spectroscopy. Nanotechnology 7:259–262

    Article  Google Scholar 

  5. Cumpson PJ, Hedley J, Zhdan P (2003) Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration. Nanotechnology 14:918–924

    Article  CAS  Google Scholar 

  6. Holbery JD, Eden VL, Sarikaya M, Fisher RM (2000) Experimental determination of scanning probe microscope cantilever spring constants utilizing a nanoindentation apparatus. Rev Sci Instrum 71:3769–3776

    Article  CAS  Google Scholar 

  7. Cleveland JP, Manne S, Bocek D (1993) A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev Sci Instrum 64:403–405

    Article  CAS  Google Scholar 

  8. Hutter JL, Bechhoefer J (1993) Calibration of atomic-force microscope tips. Rev Sci Instrum 64:1868–1878

    Article  CAS  Google Scholar 

  9. Butt H-J, Jaschke M (1995) Calculation of the thermal noise in atomic force microscopy. Nanotechnology 6:1–7

    Article  Google Scholar 

  10. Clifford CA, Seah MP (2005) Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl Surf Sci 252:1915–1933

    Article  CAS  Google Scholar 

  11. Villarrubia JS (1997) Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J Res Natl Stand Technol 102:425–454

    Article  Google Scholar 

  12. Dongmo LS, Villarrubia JS, Jones SN, Renegar TB, Postek MT, Song JF (2000) Experimental test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 85:141–153

    Article  CAS  Google Scholar 

  13. Hüttl G, Beyer D, Müller E (1997) Investigation of electrical double layers on SiO2 surfaces by means of force vs. distance measurements. Surf Interf Anal 25:543–547

    Article  Google Scholar 

  14. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353:239–241

    Article  CAS  Google Scholar 

  15. Ducker WA, Senden TJ, Pashley RM (1992) Measurement of forces in liquid using a force microscope. Langmuir 8:1831–1836

    Article  CAS  Google Scholar 

  16. Butt H-J (1991) Electrostatic interaction in atomic force microscopy. Biophys J 60:777–785

    Article  CAS  Google Scholar 

  17. Kappl M, Butt H-J (2002) The colloidal probe technique and its application to adhesion force measurements. Part Part Syst Charact 19:129–143

    Article  CAS  Google Scholar 

  18. Gillies G, Prestidge GA, Attard P (2001) Determination of the separation in colloid probe atomic force microscopy of deformable bodies. Langmuir 17:7955–7956

    Article  CAS  Google Scholar 

  19. Gillies G, Prestidge GA, Attard P (2002) An AFM study of the deformation and nanorheology of cross-linked PDMS droplets. Langmuir 18:1674–1679

    Article  CAS  Google Scholar 

  20. Gillies G, Prestidge GA (2005) Colloid Probe AFM investigation of the influence of cross-linking on the interaction behavior and nano-rheology of colloidal droplets. Langmuir 21:12342–12347

    Article  CAS  Google Scholar 

  21. Dimitriadis EK, Horkay F, Maresca J, Kachar B, Chadwick RS (2002) Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys J 82:2798–2810

    Article  CAS  Google Scholar 

  22. Tan SS, Sherman RL, Ford WT (2004) Nanoscale compression of polymer microspheres by atomic force microscopy. Langmuir 20:7015–7020

    Article  CAS  Google Scholar 

  23. Guo D, Li J, Xie G, Wang Y, Luo J (2014) Elastic properties of polystyrene nanospheres evaluated with atomic force microscopy: size effect and error analysis. Langmuir 30:7206–7212

    Article  CAS  Google Scholar 

  24. Aimé JP, Elkaakour Z, Odin C, Bouhacina T, Michel D, Curély J, Dautant A (1994) Comments on the use of the force mode in atomic force microscopy for polymer films. J Appl Phys 76:754–762

    Article  Google Scholar 

  25. Vakarelski IU, Toritani A, Nakayama M, Higashitani K (2001) Deformation and adhesion of elastomer microparticles evaluated by AFM. Langmuir 17:4739–4745

    Article  CAS  Google Scholar 

  26. Buzio R, Bosca A, Krol S, Marchetto D, Valeri S, Valbusa U (2007) Deformation and adhesion of elastomer poly(dimethylsiloxane) colloidal AFM probes. Langmuir 23:9293–9302

    Google Scholar 

  27. Weisenhorn AL, Maivald P, Butt H-J, Hansma PK (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45:11226–11232

    Article  Google Scholar 

  28. Jaschke M, Butt H-J (1995) Height calibration of optical lever atomic force microscopes by simple laser interferometry. Rev Sci Instrum 66:1258–1259

    Article  CAS  Google Scholar 

  29. Bhushan B, Marti O (2004) Scanning probe microscopy – principle of operation, instrumentation and probes. In: Bhushan B (ed) Springer handbook of nanotechnology. Springer, Berlin

    Google Scholar 

  30. Akila J, Wadhwa SS (1995) Correction for nonlinear behavior of piezoelectric tube scanners used in scanning tunneling and atomic-force microscopy. Rev Sci Instrum 66:2517–2519

    Article  CAS  Google Scholar 

  31. Butterworth JA, Pao LY, Abramovitch DY (2009) A comparison of control architectures for atomic force microscopes. Asian J Control 11:175–181

    Article  Google Scholar 

  32. Fleming AJ, Leang KK (2008) Charge drives for scanning probe microscope positioning stages. Ultramicroscopy 108:1551–1557

    Article  CAS  Google Scholar 

  33. Fleming AJ (2013) A review of nanometer resolution position sensors: operation and performance. Sens Actuators A: Phys 190:106–126

    Article  CAS  Google Scholar 

  34. Sasaki M, Hane K, Okuma S, Torii A (1994) Scanning force microscope technique for adhesion distribution measurement. J Vac Sci Technol B 13:350–354

    Article  Google Scholar 

  35. Stifter T, Weilandt E, Marti O, Hild S (1998) Influence of the topography on adhesion measured by SFM. Appl Phys A 66:S597–S605

    Article  CAS  Google Scholar 

  36. Cohen SR (1992) An evaluation of the use of the atomic force microscope for studies in nanomechanics. Ultramicroscopy 42–44:66–72

    Article  Google Scholar 

  37. Chizhik SA, Huang Z, Gorbunov VV, Myshkin NK, Tsukruk VV (1998) Micromechanical properties of elastic polymeric materials as probed by scanning force microscopy. Langmuir 14:2606–2609

    Article  CAS  Google Scholar 

  38. Lubarsky GV, Davidson MR, Bradley RH (2004) Elastic modulus, oxidation depth and adhesion force of surface modified polystyrene studied by AFM and XPS. Surf Sci 558:135–144

    Article  CAS  Google Scholar 

  39. Dokukin ME, Sokolov I (2012) On the measurements of rigidity modulus of soft materials in nanoindentation experiments at small depths. Macromolecules 45:4277–4288

    Article  CAS  Google Scholar 

  40. Silbernagl D, Cappella B (2009) Reconstruction of a hidden topography by single AFM force–distance curves. Surf Sci 603:2363–2369

    Article  CAS  Google Scholar 

  41. Wagner R, Moon R, Pratt J, Shaw G, Raman A (2011) Uncertainty quantification in nanomechanical measurements using the atomic force microscope. Nanotechnology 22:455703

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cappella, B. (2016). Force–Distance Curves in Practice. In: Mechanical Properties of Polymers Measured through AFM Force-Distance Curves. Springer Laboratory. Springer, Cham. https://doi.org/10.1007/978-3-319-29459-9_2

Download citation

Publish with us

Policies and ethics