Skip to main content

Maleic Anhydride Applications in Personal Care

  • Chapter
  • First Online:
Handbook of Maleic Anhydride Based Materials

Abstract

Maleic anhydride and its derivatives are used in many different areas in personal care. They are indispensable ingredients used in hair, skin, and oral care formulations. In hair care applications, copolymers containing maleic anhydride are mostly found in hair fixative and styling formulas. They act as film formers, compatible with a variety of solvent systems, which form polymer-hair fiber assemblies with resistance to high humidity and mechanical insult to the hairstyle. The use of this type of chemistry in hair care has a long history that began in the 1950s and continues to find itself in contemporary products. In skin care, the largest impact of maleic anhydride chemistry is in the form of copolymers of maleic anhydride and methyl vinyl ether that are used in transdermal delivery systems and as bioadhesives for biomedical devices. In addition, there are many innovative uses of maleic anhydride chemistry in the delivery of cosmetic active ingredients as well as adjuvants in antiperspirant formulations. Moreover, copolymers of maleic anhydride function as rheology modifiers in finished skin care formulations providing desirable textural and sensorial properties for the consumer. In oral care, poly(methyl vinyl ether-maleic anhydride) is found in dentifrice formulations, where it acts as a bioadhesive, film former, and delivery vehicle for active ingredients. For many years, the bioadhesive nature of poly(methyl vinyl ether-maleic anhydride) to the oral mucosa has been exploited in denture adhesive formulations as the key active ingredient. In the pages that follow, we provide a summary and critical analysis of both historical and contemporary uses of maleic anhydride in the personal care arena focusing on traditional and innovative approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Portions of this section were previously published in Ref. [198].

  2. 2.

    Portions of this section were previously published in Ref. [198].

References

Applications of Maleic Anhydride Copolymers in Hair Care

  1. Robbins C (2012) Chemical and physical behavior of hair, 5th edn. Springer, Heidelberg

    Book  Google Scholar 

  2. Jollès P, Zahn H, Höcker H (1997) Formation and structure of hair. Birkhäuser Verlag, Basel

    Google Scholar 

  3. Forslind B, Lindberg M (2004) Skin, hair, and nails: structure and function. Marcel Dekker, New York

    Google Scholar 

  4. Bouillon C, Wilkinson J (2005) The science of hair care. Taylor & Francis, Boca Raton

    Book  Google Scholar 

  5. Piersol GA (1908) Human anatomy, vol II. J.B. Lippincott, Philadelphia, PA

    Google Scholar 

  6. Jones L, Rivett D (1997) Role of 18-methyleicosanoic acid in the structure and formation of mammalian hair fibres. Micron 28:469–485

    Article  CAS  Google Scholar 

  7. Swift J (2012) The structure and chemistry of human hair. In: Wickett R, Evans T (eds) Practical modern hair science. Allured, Carol Stream, IL

    Google Scholar 

  8. Garcia M, Epps J, Yare R, Hunter L (1978) Normal cuticle-wear patterns in human hair. J Soc Cosmet Chem 29:155–175

    Google Scholar 

  9. McMullen R, Laura D, Chen S, Koelmel D, Zhang G, Gillece T (2013) Determination of physicochemical properties of delipidized hair. J Cosmet Sci 64:355–370

    CAS  Google Scholar 

  10. Wright G (1955) Film-forming compositions, US 2,723,248

    Google Scholar 

  11. Tarpey C (1964) Maleic anhydride and ethylene oxide copolymers in hair preparations, US 3,130,127

    Google Scholar 

  12. Nandagiri A, Tripathi U, Hunter L (1979) Aerosol hairspray containing an ethyl or butyl monoester of a copolymer of maleic acid and a vinyl monomer, US 4,164,562

    Google Scholar 

  13. Abegg J-L, Madrange A (1975) Aerosol hair sprays containing ethyl or butyl monoester of copolymer of vinyl monomer and maleic acid, US 3,922,341

    Google Scholar 

  14. Varco J, Williams C (1986) Stabilized hair spray composition and process, US 4,567,040

    Google Scholar 

  15. Benson A, Hourihan J, Tripathi U (1992) Aerosol hairspray composition, US 5,094,838

    Google Scholar 

  16. Gerstein T (1994) Hair setting compositions, US 5,374,420

    Google Scholar 

  17. Waxman B, Lin S (1986) Low molecular weight hairspray, US 4,567,035

    Google Scholar 

  18. Dallal J, Rocafort C (1997) Hair styling/fixative products. In: Johnson D (ed) Hair and hair care. Marcel Dekker, New York

    Google Scholar 

  19. Nandagiri A, Tripathi U, Hunter L (1981) Copolymer of vinyl ether and ester of maleic acid as aqueous spray, CA 1,092,980 A1

    Google Scholar 

  20. Hamilton B, Walls E (1996) 80% VOC, single phase aerosol hair spray composition, WO 1996 002 227 A1

    Google Scholar 

  21. Rocafort C, Ulmer H (1998) Hair spray composition having 80% or less VOC and advantageous physical and performance characteristics, EP 0 865 273 A1

    Google Scholar 

  22. Malawer E, Narayanan K, Cullen J, Rocafort C (1997) Low VOC hair spray composition, US 5,597,551

    Google Scholar 

  23. Watling I, Patel D, Petter P (1993) Non-aerosol, low VOC, pump hair spray composition, WO 1993 025 181 A1

    Google Scholar 

  24. Chuang J-C, Walls E, Johnson S, Tazi M (1990) Non-aerosol pump hair spray compositions, WO 1990 014 072 A1

    Google Scholar 

  25. Chuang J-C, Walls E, Johnson S, Tazi M (1990) Non-aerosol pump hair spray compositions, US 4,954,336

    Google Scholar 

  26. Malawer E, Narayanan K, Cullen J, Rocafort C (1995) 0% VOC, single phase hair spray composition, US 5,458,871

    Google Scholar 

  27. Blaine A, Foltis L, Gillece T, Katirgis J, Ulmer H (1999) Derivatized polymers of α-olefin-maleic anhydride alkyl half-ester or full acid, WO 1999 067 216 A1

    Google Scholar 

  28. Ulmer H, Gillece T, Katirgis J, Foltis L, Blaine A (1999) Derivative polymers of alpha-olefin-maleic anhydride alkyl half-ester or full acid, EP 1,098,877 A4

    Google Scholar 

  29. Foltis L (1999) Aquaflex FX-64 – A new stiff polymer for hair sprays and styling products. Spray Tech Market 9(5):26–29

    Google Scholar 

  30. Streuli D, Foltis L (2004) Hair spray composition, US 10/643,238

    Google Scholar 

  31. Knappe T, Scheffler R, Scheunemann V (2007) Hair-setting composition containing derivatized maleic anhydride polymer and a nonionic homopolymer or copolymer of vinylpyrrolidone, WO 2007 059 829 A1

    Google Scholar 

  32. Dallal J (2000) Hair setting products. In: Rieger M (ed) Harry's cosmeticology. Chemical Publishing, New York

    Google Scholar 

  33. Rigoletto R, Mahadeshwar A, Foltis L, Streuli D (2012) Advances in hair styling. In: Evans T, Wickett R (eds) Practical modern hair science. Allured, Carol Stream, IL

    Google Scholar 

  34. Helioff M, Plochocka K, Tazi M (1991) Mousse hair composition, US 5,066,481

    Google Scholar 

  35. Ulmer H, Gillece T, Katirgis J (2006) Maleic compound modified alpha-olefin, US 7,041,281 B2

    Google Scholar 

  36. Lee G, Hentrich S (1998) Hair treatment composition, US 5,714,135

    Google Scholar 

  37. Jones S, Marchant P (1999) Hair cosmetic composition, US 5,922,312

    Google Scholar 

  38. Constantin K, Zabotto A, Contamin J-C (1977) Gels based on vinyl ether-maleic anhydride copolymer neutralized by a basic amino acid, US 4,010,224

    Google Scholar 

  39. Dimotakis E, Singer J, Bui H, Simmonnet J-T (2013) Hair cosmetic and styling compositions based on maleic acid copolymers and polyamines, US 2013/0,309,190 A1

    Google Scholar 

  40. Helioff M, Kwak Y, Login R, Tazi M (1992) Hair styling gel composition, WO 1992 002 205 A1

    Google Scholar 

  41. Helioff M, Kwak Y, Login R, Tazi M (1993) Hair styling gel composition, EP 19 910 912 160

    Google Scholar 

  42. Swift J (1997) Mechanism of split-end formation in human hair. J Soc Cosmet Chem 48:123–126

    Google Scholar 

  43. Rigoletto R, Zhou Y, Foltis L (2007) semi-permanent split end mending with a polyelectrolyte complex. J Cosmet Sci 58:451–476

    CAS  Google Scholar 

  44. Rigoletto R, Zhou Y (2010) Mending hair damage with polyelectrolyte complexes, US 7,837,983 B2

    Google Scholar 

  45. Wright M, Szerszen M, Cohen J, Petroski D, Eagan D, Felski C, Verboom G (2010) Hair-mending compositions and associated methods, EP 20 110 834 854

    Google Scholar 

  46. Ashland, Inc. (2015) Internal technical data property chart

    Google Scholar 

  47. Valdez A (2011) Brazilian hair straightening. Cosmetiscope 17(6):1–7

    Google Scholar 

  48. McMullen R, Jachowicz J (1998) Thermal degradation of hair. I. Effect of curling irons. J Cosmet Sci 49:223–244

    Google Scholar 

  49. McMullen R, Jachowicz J (1998) Thermal degradation of hair. II. Effect of selected polymers and surfactants. J Cosmet Sci 49:245–256

    CAS  Google Scholar 

  50. McMullen R, Jachowicz J (2001) Thermal protection of hair keratin, US 6,241,977 B1

    Google Scholar 

  51. Zhou Y, Rigoletto R, Koelmel D, Zhang G, Gillece T, Foltis L, Moore D, Qu X, Sun C (2011) The effect of various cosmetic pretreatments on protecting hair from thermal damage by hot flat ironing. J Cosmet Sci 62:265–282

    CAS  Google Scholar 

  52. Cornwell P, Green P, Bullen R (2011) Hair styling composition, WO 2011 030 096 A2

    Google Scholar 

  53. Streuli D (2013) Durable styling compositions and the uses thereof, EP 2 646 539 A1

    Google Scholar 

Maleic Anhydride Chemistry in Applications for Skin Care and Transdermal Delivery

  1. McMullen RL (2015) Applications of maleic anhydride chemistry in skin care, biomedical devices, and transdermal delivery. Part I. Cosmetiscope 21(1):1, 4–7

    Google Scholar 

  2. McMullen RL (2015) Applications of maleic anhydride chemistry in skin care, biomedical devices, and transdermal delivery. Part II. Cosmetiscope 21(2):1, 4–9

    Google Scholar 

  3. McMullen RL (2015) Applications of maleic anhydride chemistry in skin care, biomedical devices, and transdermal delivery. Part III. Cosmetiscope 21(5):1, 6–14

    Google Scholar 

  4. McMullen RL (2013) Antioxidants and the skin. Allured Books, Carol Stream, IL

    Google Scholar 

  5. Sellers J (1958) Method of preparing adhesive composition comprising a maleic anhydride copolymer and product obtained, US 2,866,772

    Google Scholar 

  6. Sellers J (1961) Adhesive salt of an ester of a maleic anhydride copolymer, US 3,005,802

    Google Scholar 

  7. Lowey J, Frommherz T (1976) Methyl vinyl ether-maleic ester copolymer, US 3,988,495

    Google Scholar 

  8. Russell G, Pelesko J (1992) Pressure sensitive adhesive compositions and elements made therefrom, US 5,106,914

    Google Scholar 

  9. Plochocka K, Lynn J (2003) Polymeric hydrogels, US 6,583,225 B1

    Google Scholar 

  10. Al-Niaimi F, Beck M, Almaani N, Samarasinghe V, Williams J, Lyon C (2012) The relevance of patch testing in peristomal dermatitis. Br J Dermatol 167:103–109

    Article  CAS  Google Scholar 

  11. Scalf L, Fowler J (2000) Peristomal allergic contact dermatitis due to gantrez in stomahesive paste. J Am Acad Dermatol 42:355–356

    Article  CAS  Google Scholar 

  12. Sambasivam M, Crivello J (2012) Amphiphilic silicone copolymers for pressure sensitive adhesive applications, EP 2,451,883 A1

    Google Scholar 

  13. Woolfson A, McCafferty D, McCallion C, McAdams E, Anderson J (1995) Moisture-activated, electrically conducting bioadhesive hydrogels as interfaces for bioelectrodes: effect of formulation factors on cutaneous adherence in wet environments. J Appl Polym Sci 56:1151–1159

    Article  CAS  Google Scholar 

  14. Woolfson A, McCafferty D, McCallion C, McAdams E, Anderson J (1995) Moisture-activated, electrically conducting bioadhesive hydrogels as interfaces for bioelectrodes: effect of film hydration on cutaneous adherence in wet environments. J Appl Polym Sci 58:1291–1296

    Article  CAS  Google Scholar 

  15. Woolfson A (1996) Moisture-activated, electrically conducting bioadhesive interfaces for biomedical sensor applications. Analyst 121:711–714

    Article  CAS  Google Scholar 

  16. Witte M, Kiyama T, Barbul A (2002) Nitric oxide enhances experimental wound healing in diabetes. Br J Surg 89:1594–1601

    Article  CAS  Google Scholar 

  17. Witte M, Barbul A (2002) Role of nitric oxide in wound repair. Am J Surg 183:406–412

    Article  CAS  Google Scholar 

  18. Lee P, Li Y (2009) Supramacromolecular polymer complexes providing controlled nitric oxide release for healing wounds, WO 2009 026 680 A1

    Google Scholar 

  19. Schorr P, Hoffman D, Weart I, Yang K (2011) Skin preparation that immobilizes bacteria, WO 2011 077 281 A2

    Google Scholar 

  20. Schorr P, Hoffman D, Weart I, Yang K (2012) Skin preparation that immobilizes bacteria, EP 2,515,783 A2

    Google Scholar 

  21. Roh M, Han M, Kim D, Chung K (2006) Sebum output as a factor contributing to the pore size of facial pores. Cutan Biol 155:890–894

    CAS  Google Scholar 

  22. Crotty B, Miner P, Johnson A, Znaiden A (1999) Cosmetic product for removal of keratotic plugs from skin pores, US 5,968,537

    Google Scholar 

  23. Crotty B, Miner P, Johnson A, Znaiden A (2001) Cosmetic product for removal of keratotic plugs from skin pores, US 6,174,536 B1

    Google Scholar 

  24. Crotty B, Miner P, Johnson A, Znaiden A, Corey J, Vargas A, Meyers A, and Lange B (1998) Cosmetic product, WO 1998 042 303 A1

    Google Scholar 

  25. Quatrale RP, Waldman AH, Rogers JG, Felger CB (1981) The mechanism of antiperspirant action by aluminum salts. I. The effect of cellophane tape stripping on aluminum salt-inhibited eccrine sweat glands. J Soc Cosmet Chem 32:67–73

    CAS  Google Scholar 

  26. Glogau RG (2001) Treatment of palmar hyperhidrosis with botulinum toxin. Semin Cutan Med Surg 20:101–108

    Article  CAS  Google Scholar 

  27. Papa C, Kligman A (1967) Mechanism of eccrine anhidrosis. II. The antiperspiratory effect of aluminum salt. J Invest Dermatol 49:139–145

    Article  CAS  Google Scholar 

  28. Shelley WB, Horvath PN (1950) Experimental miliaria in man. II. Production of sweat retention, anhidrosis and miliaria crystallina by various kinds of injury. J Invest Dermatol 14:9–20

    Article  CAS  Google Scholar 

  29. Shelley WB, Horvath PN (1950) Experimental miliaria in man. III. Production of miliaria rubra (prickle heat). J Invest Dermatol 14:193–204

    Article  Google Scholar 

  30. Shelley WB, Hurley HJ (1975) Studies on topical antiperspirant control of axillary hyperhidrosis. Acta Derm Venereol 55:241–260

    CAS  Google Scholar 

  31. Reller HH, Luedders WL (1977) Pharmacologic and toxicologic effects of topically applied agents on the eccrine sweat glands. In: Marzulli FN, Maibach HI (eds) Advances in modern toxicology, vol 4, Dermatoxicology and pharmacology. Hemisphere Publishing, Washington, DC

    Google Scholar 

  32. Hölzle E, Kligman AM (1979) Mechanism of antiperspirant action of aluminum salts. J Soc Cosmet Chem 30:279–295

    Google Scholar 

  33. Hölzle E, Braun-Falco O (1984) Structural changes in axillary eccrine glands following long-term treatment with aluminum chloride hexahydrate solution. Br J Dermatol 110:399–403

    Article  Google Scholar 

  34. Quatrale RP, Coble DW, Stoner KL, Felger CB (1981) The mechanism of antiperspirant action by aluminum salts. II. Histological observations of human eccrine sweat glands inhibited by aluminum chlorohydrate. J Soc Cosmet Chem 32:107–136

    CAS  Google Scholar 

  35. Quatrale RP, Coble DW, Stoner KL, Felger CB (1981) The mechanism of antiperspirant action of aluminum salts. III. Histological observations of human eccrine sweat glands inhibited by aluminum zirconium chlorohydrate glycine complex. J Soc Cosmet Chem 32:195–221

    CAS  Google Scholar 

  36. Quatrale RP, Thomas EL, Birnbaum JE (1985) The site of antiperspirant action by aluminum salts in the eccrine sweat glands of the axilla. J Soc Cosmet Chem 36:435–440

    CAS  Google Scholar 

  37. Strassburger J, Coble DW (1987) Infrared characterization of human sweat glands inhibited with aluminum chlorohydrate. J Soc Cosmet Chem 38:109–124

    CAS  Google Scholar 

  38. Hölzle E, Kligman AM (1979) Factors influencing the anti-perspirant action of aluminum salts. J Soc Cosmet Chem 30:357–367

    Google Scholar 

  39. Brun R (1959) Studies on perspiration. J Soc Cosmet Chem 10:70–77

    Google Scholar 

  40. Schmid U, Hunziker N, Brun R, Jadassohn W (1964) The protective effect of the sebaceous layer. Br J Dermatol 75:307–319

    Google Scholar 

  41. Rieley H, Smith K (2002) Antiperspirant products, US 2002/0,119,108 A1

    Google Scholar 

  42. Cropper M (2005) Antiperspirant compositions, US 2005/0,100,521 A1

    Google Scholar 

  43. Brown N, Rieley H, Smith I, Stockton J (2006) Antiperspirant emulsion compositions, US 2006/0,051,306 A1

    Google Scholar 

  44. Gillece T, Foltis L, Koelmel D, Luschen A, Barrett C (2010) Use of polyelectrolyte complexes in antiperspirant technology, US 2010/0,297,201 A1

    Google Scholar 

  45. Fares H, Prettypaul D (2013) Antiperspirant/deodorant compositions, WO 2013 052 454 A1

    Google Scholar 

  46. Travedi B, Culbertson B (1982) Maleic anhydride. Plenum, New York

    Book  Google Scholar 

  47. Prausnitz M, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268

    Article  CAS  Google Scholar 

  48. Chung K, Wu C, Malawer E (1990) Glass transition temperatures of poly(methyl vinyl ether-co-maleic anhydride) (PMVEMA) and poly(methyl vinyl ether-co-maleic acid) (PMVEMAC) and the kinetics of dehydration of PMVEMAC by thermal analysis. J Appl Polym Sci 41:793–803

    Article  CAS  Google Scholar 

  49. McCarron P, Woolfson A, Donnelly R, Andrews G, Zawislak A, Price J (2003) Influence of plasticizer type and storage conditions on properties of poly(methyl vinyl-co-maleic anhydride) bioadhesive films. J Appl Polym Sci 91:1576–1589

    Article  Google Scholar 

  50. Zawislak A, McCarron P, McCluggage W, Price J, Donnelly R, McClelland H, Dobbs S, Woolfson A (2004) Successful photodynamic therapy of vulval Paget's disease using a novel patch-based delivery system containing 5-aminolevulinic acid. BJOG 111:1143–1145

    Article  CAS  Google Scholar 

  51. McCarron P, Donnelly R, Zawislak A, Woolfson A, Price J, McClelland H (2005) Evaluation of a water-soluble bioadhesive patch for photodynamic therapy of vulval lesions. Int J Pharm 293:11–23

    Article  CAS  Google Scholar 

  52. Donnelly R, Ma L-W, Juzenas P, Iani V, McCarron P (2006) Topical bioadhesive patch systems enhance selectivity of protoporphyrin IX accumulation. Photochem Photobiol 82:670–675

    Article  CAS  Google Scholar 

  53. Singh T, McCarron P, Woolfson A, Donnelly R (2009) Physicochemical characterization of poly(ethylene glycol) plasticized poly(methyl vinyl ether-co-maleic acid) films. J Appl Polym Sci 112:2792–2799

    Article  CAS  Google Scholar 

  54. Singh T, McCarron P, Woolfson A, Donnelly R (2009) Investigation of swelling and network parameters of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels. Eur Polym J 45:1239–1249

    Article  Google Scholar 

  55. Singh T, Woolfson A, Donnelly R (2009) Investigation of solute permeation across hydrogels composed of poly(methyl vinyl ether-co-maleic acid) and poly(ethylene glycol). J Pharm Pharmacol 62:829–837

    Article  Google Scholar 

  56. Garland M, Singh T, Woolfson A, Donnelly R (2011) Electrically enhanced solute permeation across poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: effect of hydrogel cross-link density and ionic conductivity. Int J Pharm 406:91–98

    Article  CAS  Google Scholar 

  57. Singh T, Garland M, Migalska K, Salvador E, Shaikh R, McCarthy H, Woolfson A, Donnelly R (2012) Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: application in transdermal delivery systems. J Appl Polym Sci 125:2680–2694

    Article  CAS  Google Scholar 

  58. Luppi B, Cerchiara T, Bigucci F, Di Pietra A, Orienti I, Zecchi V (2003) Crosslinked poly(methyl vinyl ether-co-maleic anhydride) as topical vehicles for hydrophilic and lipophilic drugs. Drug Deliv 10:239–244

    Article  CAS  Google Scholar 

  59. Boehm R, Miller P, Singh R, Shah A, Stafslien S, Daniels J, Narayan R (2012) Indirect rapid prototyping of antibacterial acid anhydride copolymer microneedles. Biofabrication 4(1):011002. doi:10.1088/1758-5082/4/1/011002

    Article  Google Scholar 

  60. Gomaa Y, El-Khordagui L, Garland M, Donnelly R, McInnes F, Meidan V (2012) Effect of microneedle treatment on the skin permeation of a nanoencapsulated dye. J Pharm Pharmacol 64(11):1592–1602. doi:10.1111/j.2042-7158.2012.01557.x

    Article  CAS  Google Scholar 

  61. Gomaa Y, Garland M, McInnes F, El-Khordagui L, Wilson C, Donnelly R (2012) Laser-engineered dissolving microneedles for active transdermal delivery of nadroparin calcium. Eur J Pharm Biopharm 82(2):299–307. doi:10.1016/j.ejpb.2012.07.008

    Article  CAS  Google Scholar 

  62. Donnelly R, Garland M, Morrow D, Migalska K, Singh T, Majithiya R, Woolfson A (2010) Optical coherence tomography is a valuable tool in the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J Control Release 147(3):333–341. doi:10.1016/j.jconrel.2010.08.008

    Article  CAS  Google Scholar 

  63. Migalska K, Morrow D, Garland M, Thakur R, Woolfson A, Donnelly R (2011) Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm Res 28(8):1919–1930. doi:10.1007/s11095-011-0419-4

    Article  CAS  Google Scholar 

  64. Donnelly R, Singh T, Garland M, Migalska K, Majithiya R, McCrudden C, Kole P, Mahmood T, McCarthy H, Woolfson A (2012) Hydrogel-forming microneedle arrays for enhanced transdermal drug delivery. Adv Funct Mater 22:4879–4890

    Article  CAS  Google Scholar 

  65. Donnelly R, Mooney K, McCrudden M, Vicente-Pérez E, Belaid L, González-Vázquez P, McElnay J, Woolfson A (2014) Hydrogel-forming microneedles increase in volume during swelling in skin, but skin barrier function recovery is unaffected. J Pharm Sci 103:1478–1486

    Article  CAS  Google Scholar 

  66. Singh T, Garland M, Migalska K, Salvador E, Shaikh S, McCarthy H, Woolfson A, Donnelly R (2012) Influence of a pore-forming agent on swelling, network parameters, and permeability of poly(ethylene glycol)-crosslinked poly(methyl vinyl ether-co-maleic acid) hydrogels: application in transdermal delivery systems. J Appl Polym Sci 125:2680–2694

    Article  CAS  Google Scholar 

  67. Shroff K, Vidyasagar A (2013) Polymer nanoparticles: newer strategies towards targeted cancer therapy. J Phys Chem Biophys 3:125. doi:10.4172/2161-0398.1000125

    Google Scholar 

  68. Soppimath K, Aminabhavi T, Kulkarni A, Rudzinski W (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    Article  CAS  Google Scholar 

  69. Guterres S, Alves M, Pohlmann A (2007) Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2:147–157

    Google Scholar 

  70. Arbós P, Arangoa M, Campanero M, Irache J (2002) Quantification of the bioadhesive properties of protein-coated PVM/MA nanoparticles. Int J Pharm 242:129–136

    Article  Google Scholar 

  71. Arbós Vila P, Merodio de la Quintana M (2002) Production of nanoparticles from methyl vinyl ether copolymer and maleic anhydride for the administration of hydrophilic pharmaceuticals, more particularly of puric and pyrimidine bases, EP 1 369 110 A1

    Google Scholar 

  72. Salman H, Azcarate I (2012) Nanoparticles comprising esters of poly(methyl vinyl ether-co-maleic anhydride) and uses thereof, WO2012 140 252

    Google Scholar 

  73. Irache Garreta J, Gamazo de la Rasilla C, Sanz Larruga M, Ferrer Puga M, San Roman Aberasturi B, Salman H, Gomez Martinez S, Ochoa Reparaz J (2007) Immune response stimulating composition comprising nanoparticles based on a methyl vinyl ether-maleic acid copolymer, US 2007/0,224,225 A1

    Google Scholar 

  74. Xing J, Deng L, Li J, Dong A (2009) Amphiphilic poly {[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} graft copolymer nanoparticles as carriers for transdermal drug delivery. Int J Nanomed 4:227–232

    CAS  Google Scholar 

  75. Dessy A, Kubowicz S, Alderighi M, Bartoli C, Piras A, Schmid R, Chiellini F (2011) Dead Sea minerals loaded polymeric nanoparticles. Colloid Surf B Biointerfaces 87:236–242

    Article  CAS  Google Scholar 

  76. Deng L, Yao C, Li A, Dong A (2005) Preparation and characterization of poly{[α-maleic anhydride-ω-methoxy-poly(ethylene glycol)]-co-(ethyl cyanoacrylate)} copolymer nanoparticles. Polym Int 54:1007–1013

    Article  CAS  Google Scholar 

  77. Zhai Y, Qiao Y, Xie C, Lin L, Ma Y, Dong A, Deng L (2008) Preparation and in vitro release of D, L-tetrahydropalmatine-loaded graft copolymer nanoparticles. J Appl Polym Sci 110:3525–3531

    Article  CAS  Google Scholar 

  78. Kim K, Kim K-S, Kim H, Lee S, Park J-H, Han J-H, Seok S-H, Park J, Choi Y, Kim Y, Han J, Son J-H (2012) Terahertz dynamic imaging of skin drug absorption. Opt Express 20(9):9476–9484

    Article  Google Scholar 

  79. Chiellini F, Piras A, Gazzarri M, Bartoli C, Ferri M, Paolini L, Chiellini E (2011) Bioactive polymeric materials for targeted administration of active agents: synthesis and evaluation. Macromol Biosci 8:516–525

    Article  Google Scholar 

  80. Bekele H (2002) Topical composition comprising a functionalized acid anhydride-based cosmetic bonding agent, US 6,495,150 B2

    Google Scholar 

  81. Tonge S (2009) Compositions comprising a lipid and copolymer of styrene and maleic acid, US 2009/0,155,375 A1

    Google Scholar 

  82. Tonge S (2014) Compositions comprising a lipid and copolymer of styrene and maleic acid, US 8,623,414 B2

    Google Scholar 

  83. Tonge S, Tighe B (2002) Lipid-containing compositions and uses thereof, US 6,436,905 B1

    Google Scholar 

  84. Tonge S, Tighe B (2001) Responsive hydrophobically associating polymers: a review of structure and properties. Adv Drug Deliv Rev 53:109–122

    Article  CAS  Google Scholar 

  85. Force C, Starr F (1986) Vegetable oil adducts as emollients in skin and hair care products, WO 1996 000 800 A1

    Google Scholar 

  86. Bertz S, Miksza F, Zucker E (2001) High purity adduct of castor oil and maleic anhydride, US 6,225,485 B1

    Google Scholar 

  87. Spina M, Carnelos C, Leo C, Faria J (2008) A non-rinse off cosmetic composition and a cosmetic product comprising said composition, US 2008/0,193,396 A1

    Google Scholar 

  88. Potechin K, Boyke C (2013) Foaming cleanser, US 2013/0,137,619 A1

    Google Scholar 

  89. Harmalker S, Ash K (2014) Moisturizing compositions, US 8,703,160 B2

    Google Scholar 

  90. Lu G, Moore D (2013) Measuring changes in skin barrier function with skin impedance. HPC Today 8(1):28–31

    Article  CAS  Google Scholar 

  91. Moore D, Orofino S, Antonopoulos P (2006) Maintaining moisturization from rinse-off products. HAPPI (November), 77–81

    Google Scholar 

  92. Musa O, Khosravi E (2013) Renewable modified natural compounds, US 2013/0,289,284 A1

    Google Scholar 

  93. Coats C (1969) Electrocoating compositions comprising of aromatic amine amidated drying oil copolymer-maleic anhydride adducts, US 3,428,589

    Google Scholar 

  94. Thames S, Smith O, Evans J, Dutta S, Chen L (2008) Functionalized vegetable oil derivatives, latex compositions and coatings, US 7,361,710 B2

    Google Scholar 

  95. Aydin S, Akçay H, Özkan E, Seniha Güner F, Tuncer Erciyes A (2004) The effects of anhydride type and amount on viscosity and film properties of alkyd resin. Prog Org Coat 51:273–279

    Article  CAS  Google Scholar 

  96. Seniha Güner F, Yağcı Y, Tuncer Erciyes A (2006) Polymers from triglyceride oils. Prog Polym Sci 31:633–670

    Article  Google Scholar 

  97. Musa O, Narayanan K, Shih J, Qu X, Zhang T, Onnembo G (2013) Self-emulsifying oil, US 2013/0,210,630 A1

    Google Scholar 

  98. Vanlerberghe G, Sebag H (1976) Cosmetic compositions for the skin containing a chitosan derivative, US 3,953,608

    Google Scholar 

  99. Zhong C, Wu J, Reinhart-King C, Chu C (2010) Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan-polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater 6:3908–3918

    Article  CAS  Google Scholar 

  100. Hollingshurst C, Price D, Steckel T, Filippini B, Huang N (2006) Low color polyisobutylene succinic anhydride-derived emulsifiers, US 2006/0,223,945 A1

    Google Scholar 

  101. Rieger M (2000) Skin cleansing products. In: Rieger M (ed) Harry’s Cosmeticology. Chemical Publishing, New York

    Google Scholar 

  102. Chaussee J (1986) Cleansing compositions containing alpha olefin/maleic anhydride terpolymers, US 4,603,005

    Google Scholar 

  103. Verbrugge C (1982) Waxy maleic anhydride alpha olefin terpolymers, US 4,358,573

    Google Scholar 

  104. Chaussee J (1985) Cleansing compositions containing alpha olefin/maleic anhydride terpolymers, EP 0 182 369 A2

    Google Scholar 

  105. G. Sonenstein (1981) Soap bar, US 4,265,778

    Google Scholar 

  106. Chen LH (1989) Interaction of vitamin E and ascorbic acid (review). In Vivo 3:199–209

    Google Scholar 

  107. Biatry B (2004) Oxidation-sensitive hydrophilic active principle containing composition and use thereof, US 2004/0,047,824 A1

    Google Scholar 

  108. Kameyama K, Sakai C, Kondoh S, Yonemoto K, Nishiyama S, Tagawa M, Murata T, Ohnuma T, Quigley J, Dorsky A, Bucks D, Blanock K (1996) Inhibitory effect of magnesium l-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J Am Acad Dermatol 34:29–33

    Article  CAS  Google Scholar 

  109. Biatry B (2004) Cosmetic and/or dermatological use of a composition comprising at least one oxidation-sensitive hydrophilic active principle stabilized by at least one maleic anhydride copolymer, US 2004/0,001,792 A1

    Google Scholar 

  110. Biatry B (2004) Composition containing oxidation-sensitive hydrophilic active principle and maleic anhydride copolymer and use thereof, US 2004/0,042,990 A1

    Google Scholar 

  111. Biatry B (2004) Process of making and using composition containing oxidation-sensitive hydrophilic active principle and maleic anhydride copolymer, US 2004/0,175,342 A1

    Google Scholar 

  112. Biatry B (2004) Cosmetic and/or dermatological use of a composition containing at least one oxidation-sensitive hydrophilic active principle stabilized by at least one maleic anhydride copolymer, US 2004/0,052,739 A1

    Google Scholar 

  113. Biatry B (2010) Oxidation-sensitive hydrophilic active principle containing composition and use thereof, US 7,691,903 B2

    Google Scholar 

  114. Biatry B (2010) Cosmetic and/or dermatological use of a composition comprising at least one oxidation-sensitive hydrophilic active principle stabilized by at least one maleic anhydride copolymer, US 7,803,354 B2

    Google Scholar 

  115. Carrera M, Primavera G, Berardesca E (2006) Alpha hydroxy acids. In: Paye M, Barel A, Maibach H (eds) Handbook of cosmetic science and technology (2nd edn). Taylor & Francis, New York

    Google Scholar 

  116. Chaudhuri R, Bower D (1998) Cosmetic composition for rejuvenation of skin without skin irritation, US 5,736,128

    Google Scholar 

  117. Prosise W, Plochocka K (2001) Cosmetic composition for rejuvenation of skin without skin irritation, US 6,312,714 B1

    Google Scholar 

  118. Black A, Feinstone W (1974) Sunscreen preparation employing ethylene-maleic anhydride copolymers, US 3,821,363

    Google Scholar 

  119. Kwak Y, Kopolow S, Helioff M, Tazi M (1992) Sunscreen composition, US 5,145,669

    Google Scholar 

  120. Musa O, Shih J (2013) Performance-boosting UV-absorbing compounds, US 8,557,226 B2

    Google Scholar 

  121. Ozkan S, Gillece T, Senak L, Moore D (2012) Characterization of yield stress and slip behaviour of skin/hair care gels using steady flow and LAOS measurements and their correlation with sensorial attributes. Int J Cosmet Sci 34:193–201

    Article  CAS  Google Scholar 

  122. Tadros T (2006) Principles of emulsion stabilization with special reference to polymeric surfactants. Int J Cosmet Sci 57:153–169

    CAS  Google Scholar 

  123. Goertz H-H, Raubenheimer H-J, Denzinger W (1990) Preparation of copolymers of ethylenically unsaturated dicarboxylic anhydrides and alkyl vinyl ethers, US 4,952,558

    Google Scholar 

  124. Gripp A, Helioff M, Kwak Y (1996) Stabileze PVM/MA decadiene crosspolymers: versatile thickeners for skin care formulations. Cosmet Toilet Manf Worldwide, 115–118

    Google Scholar 

  125. Osborne D (2000) Topical antibiotic composition for rapid wound healing, EP 0,987,019 A1

    Google Scholar 

  126. Evison J, Rhowbotham S (2013) Depilatory compositions, US 2013/0,205,514 A1

    Google Scholar 

  127. Cauwet D, Dubief C (1998) Cosmetic composition containing at least one surface-active agent of the alkyl polyglycoside and/or polyglycerolated type and at least one crosslinked copolymer of maleic anhydride (C1-C5) alkylvinyl ether, US 5,744,147

    Google Scholar 

  128. Helioff M, Tazi M, Kwak Y, Login R (1991) Creamy nail polish remover containing hydrolyzed and neutralized maleic anhydride C1-C4 alkyl vinyl ether copolymer, US 5,024,779

    Google Scholar 

  129. Helioff M, Tazi M, Login R, Kwak Y (1991) Hair styling gel composition, US 5,032,391

    Google Scholar 

  130. Kwak Y, Kopolow S (1993) Rapid hydrolysis of crosslinked maleic anhydride/lower alkyl vinyl ether copolymers, US 5,254,636

    Google Scholar 

  131. Kwak Y, Kopolow S (1996) Process for hydrolyzing and neutralizing a crosslinked polymer of maleic anhydride and a C1–C5 alkyl vinyl ether, optionally with a hydrophobic monomer, substantially instantly at room temperature, US 5,521,256

    Google Scholar 

  132. Kwak Y, Kopolow S, Login R (1996) Process for the preparation of stable water based stock solutions of crosslinked lower alkyl vinyl ether and maleic anhydride copolymers and hydrogel product of the process, US 5,516,828

    Google Scholar 

  133. Kiatkamjornwong S, Mongkolsawat K, Sonsuk M (2002) Synthesis and property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)] superabsorbent via γ-irradiation. Polymer 43:3915–3924

    Article  CAS  Google Scholar 

  134. Koulbanis C, Zabotto A, Contamin J-C (1977) Gels based on vinyl ether-maleic anhydride copolymer neutralized by a basic amino acid, US 4,010,254

    Google Scholar 

  135. Feinstone W, Black A (1970) Method of wrinkle smoothing, US 3,523,998

    Google Scholar 

  136. Jachowicz J, McMullen R, Zolotarsky Y, Prettypaul D (2005) Skin tightening with polymer-containing formulations. Mechanical skin indentation, photography-image analysis, and panel testing. In: Cosmetic science technology. T Four Group, London, pp 206–215

    Google Scholar 

  137. Jachowicz J, McMullen R, Prettypaul D (2008) Alteration of skin mechanics by thin polymer films. Skin Res Technol 14:312–319

    Article  Google Scholar 

Maleic Anhydride Chemistry in Oral Care

  1. Roy S, Prabhakar B (2010) Bioadhesive polymeric platforms for transmucosal drug delivery systems – a review. Trop J Pharm Res 9(1):91–104

    Article  CAS  Google Scholar 

  2. Gregory J, Polymers at interfaces, by G.J. Fleer, M.A. Cohen Stuart, J.M.H.M. Scheutjens, T. Cosgrove and B. Vincent. Chapman and Hall, London, 1993, pp xv + 502, price £65.00. ISBN 0-412-58160-4. Polym Int 1995, 36(1):102

    Google Scholar 

  3. Guzmán E, Ortega F, Baghdadli N, Cazeneuve C, Luengo G, Rubio R (2011) Adsorption of conditioning polymers on solid substrates with different charge density. ACS Appl Mater Interfaces 3(8):3181–3188

    Article  Google Scholar 

  4. Silva R, Urzúab M, Petri D (2009) Lysozyme binding to poly(4-vinyl-N-alkylpyridinium bromide). J Colloid Interf Sci 330(2):310–316

    Article  CAS  Google Scholar 

  5. Van de Steeg H, Cohen Stuart M, De Keizer A, Bijsterbosch B (1992) Polyelectrolyte adsorption: a subtle balance of forces. Langmuir 8(10):2538–2546

    Article  Google Scholar 

  6. Rojas O, Ernstsson M, Neuman R, Claesson P (2002) Effect of polyelectrolyte charge density on the adsorption and desorption behavior on mica. Langmuir 18(5):1604–1612

    Article  CAS  Google Scholar 

  7. Alexander A, Ajazuddin S, Mukesh S, Tripathi D (2011) Polymers and permeation enhancers: specialized components of mucoadhesives. Stamford J Pharm Sci 4(1):91–95

    CAS  Google Scholar 

  8. www.TheCosmeticChemist.com

  9. Hicks J, Garcia-Godoy F, Flaitz C (2004) Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). J Clin Pediatr Dent 28(2):119–124

    Article  Google Scholar 

  10. ten Cate J (2006) Biofilms, a new approach to the microbiology of dental plaque. Odontology 94(1):1–9

    Article  Google Scholar 

  11. Van Nieuw Amerongen A, Bolscher J, Veerman E (2004) Salivary proteins: protective and diagnostic value in cariology? Caries Res 38:247–253

    Article  Google Scholar 

  12. Jin Y, Yip H-K (2002) Supragingival calculus: formation and control. Crit Rev Oral Biol Med 13(5):426–441

    Article  Google Scholar 

  13. Germann D, Krops E, King R, Stickney P (1961) Stabilizer for dentures, US 3,003,988

    Google Scholar 

  14. Tazi M, Login R, Kwak Y, Gangadharan B, Haldar R (1991) Denture adhesive, US 5,037,924

    Google Scholar 

  15. Schobel AA, Kumar L (1992) Cationic derivative of guar gum, sodium-calcium salt of maleic anhydride-methyl vinyl ether copolymer, sodium carboxymethyl cellulose, US 5,093,387

    Google Scholar 

  16. Kumar L, Schobel A (1990) Denture adhesives and methods for preparing same, US 4,980,391

    Google Scholar 

  17. Chang AT-S, Zientek L, Viningauz A, Scheps M (1983) Denture fixative composition, US 4,373,036

    Google Scholar 

  18. Synodis J, Smetana A, Gasman R, Wong E, Clarke H (1998) Denture adhesive composition, US 5,830,933

    Google Scholar 

  19. Borja M (2011) Hydrogel denture adhesive, US 2011/0,065,831

    Google Scholar 

  20. Borja M (2013) Gantrez hydrogel with dry tack, US 2013/0,195,771 A1

    Google Scholar 

  21. Saunders G, MacCreath B (2010) Analysis of water soluble polymers in denture adhesives by SEC. Agilent Technologies; application note; www.agilent.com/chem

Download references

Acknowledgments

I would like to express my sincere gratitude to Joseph Dallal, Raymond B. Clark, and Petros Gebreselassie of Ashland, Inc. for many helpful conversations as well as suggestions for the text. A debt of gratitude is also due to Timothy Gillece and Raymond Rigoletto, also from Ashland, Inc., who reviewed the manuscript and provided guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger L. McMullen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McMullen, R.L. (2016). Maleic Anhydride Applications in Personal Care. In: Musa, O. (eds) Handbook of Maleic Anhydride Based Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-29454-4_8

Download citation

Publish with us

Policies and ethics