Skip to main content

Hemodynamic Monitoring Techniques

  • Chapter
  • First Online:
Hemodynamic Monitoring in the ICU
  • 2451 Accesses

Abstract

Pulmonary arterial pressure (PAP) is measured at the distal end of the Swan-Ganz catheter. A transient occlusion of blood flow is performed during inflation of the distal balloon in a large caliber pulmonary artery. Beyond the balloon, the pressure drops in the pulmonary artery to a pressure called the pulmonary artery occlusion pressure (PAOP) (Fig. 3.1). This pressure is the same throughout the pulmonary vascular segment in which the balloon is occluded. This segment behaves as an open downstream static column of blood in the pulmonary venous segment. In this regard, the PAOP is a reflection of the pulmonary venous pressure. Because the artery occluded by the balloon is rather large in size, the PAOP is the pressure of a pulmonary vein of the same caliber. Because the resistance of the pulmonary venous segment flowing into the left atrium is considered to be low, the PAOP is a good reflection of the pressure of the left atrium and, by extension, the diastolic pressure of the left ventricle, provided that there is no mitral stenosis. Notably, the PAOP does not match the pulmonary artery wedge pressure. The wedge pressure corresponds to the pressure in relation to the occlusion of a pulmonary vessel of a smaller caliber obtained without inflating the balloon. Thus, the wedge pressure reflects the pulmonary venous pressure in an area with a lower rating and is greater than the PAOP. Finally, the pulmonary capillary pressure cannot be directly measured. It can only be estimated in two ways, from the decay curve upon balloon inflation or from the Gaar equation, as follows:

$$ \mathrm{Pulmonarycapillarypressure}=\mathrm{PAOP}+0.4\times \left({\mathrm{PAP}}_{\mathrm{mean}}-\mathrm{PAOP}\right) $$

Unfortunately, this formula is only relevant if the venous resistance is homogeneously distributed. Pulmonary capillary pressure is rarely used in clinical practice due to the difficulty of measurement, even though it reliably reflects the risk of pulmonary edema.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacs G, Avian A, Olschewski A, Olschewski H (2013) Zero reference level for right heart catheterisation. Eur Respir J 42(6):1586–1594

    Article  PubMed  Google Scholar 

  2. Summerhill EM, Baram M (2005) Principles of pulmonary artery catheterization in the critically ill. Lung 183(3):209–219

    Article  PubMed  Google Scholar 

  3. Bridges EJ, Woods SL (1993) Pulmonary artery pressure measurement: state of the art. Heart Lung 22(2):99–111

    CAS  PubMed  Google Scholar 

  4. Carter RS, Snyder JV, Pinsky MR (1985) LV filling pressure during PEEP measured by nadir wedge pressure after airway disconnection. Am J Physiol 249(4 Pt 2):H770-6. Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S

    PubMed  Google Scholar 

  5. Pinsky M, Vincent JL, De Smet J (1991) Estimating left ventricular filling pressure during positive end-expiratory pressure in humans. Am Rev Respir Dis 143(1):25–31. Research Support, Non-U.S. Gov’t

    Article  CAS  PubMed  Google Scholar 

  6. Teboul JL, Pinsky MR, Mercat A, Anguel N, Bernardin G, Achard JM et al (2000) Estimating cardiac filling pressure in mechanically ventilated patients with hyperinflation. Crit Care Med 28(11):3631–3636

    Article  CAS  PubMed  Google Scholar 

  7. West JB, Dollery CT, Naimark A (1964) Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19:713–724

    CAS  PubMed  Google Scholar 

  8. Teboul JL, Besbes M, Andrivet P, Axler O, Douguet D, Zelter M et al (1992) A bedside index assessing the reliability of pulmonary artery occlusion pressure measurements during mechanical ventilation with positive end-expiratory pressure. J Crit Care 7(1):22–29

    Article  Google Scholar 

  9. Jones JW, Izzat NN, Rashad MN, Thornby JI, McLean TR, Svensson LG et al (1992) Usefulness of right ventricular indices in early diagnosis of cardiac tamponade. Ann Thorac Surg 54(1):44–49

    Article  CAS  PubMed  Google Scholar 

  10. Crexells C, Chatterjee K, Forrester JS, Dikshit K, Swan HJ (1973) Optimal level of filling pressure in the left side of the heart in acute myocardial infarction. N Engl J Med 289(24):1263–1266

    Article  CAS  PubMed  Google Scholar 

  11. Her C, Mandy S, Bairamian M (2005) Increased pulmonary venous resistance contributes to increased pulmonary artery diastolic-pulmonary wedge pressure gradient in acute respiratory distress syndrome. Anesthesiology 102(3):574–580. Research Support, Non-U.S. Gov’t

    Article  PubMed  Google Scholar 

  12. English IC, Frew RM, Pigott JF, Zaki M (1969) Percutaneous cannulation of the internal jugular vein. Thorax 24(4):496–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Baden H (1964) Percutaneous catheterization of the subclavian vein. Nord Med 71:590–593

    CAS  PubMed  Google Scholar 

  14. Zingg W, Cartier V, Inan C, Touveneau S, Theriault M, Gayet-Ageron A et al (2014) Hospital-wide multidisciplinary, multimodal intervention programme to reduce central venous catheter-associated bloodstream infection. PLoS One 9(4):e93898

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aitken EL, Stevenson KS, Gingell-Littlejohn M, Aitken M, Clancy M, Kingsmore DB (2014) The use of tunneled central venous catheters: inevitable or system failure? J Vasc Access 0(0):0

    Google Scholar 

  16. Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189(3):609–615

    CAS  PubMed  Google Scholar 

  17. Guerin L, Monnet X, Teboul JL (2013) Monitoring volume and fluid responsiveness: from static to dynamic indicators. Best Pract Res Clin Anaesthesiol 27(2):177–185

    Article  PubMed  Google Scholar 

  18. Magder S (2005) How to use central venous pressure measurements. Curr Opin Crit Care 11(3):264–270

    Article  PubMed  Google Scholar 

  19. Guyton AC, Richardson TQ, Langston JB (1964) Regulation of cardiac output and venous return. Clin Anesth 3:1–34

    CAS  PubMed  Google Scholar 

  20. Guyton AC, Adkins LH (1954) Quantitative aspects of the collapse factor in relation to venous return. Am J Physiol 177(3):523–527

    CAS  PubMed  Google Scholar 

  21. Bressack MA, Raffin TA (1987) Importance of venous return, venous resistance, and mean circulatory pressure in the physiology and management of shock. Chest 92(5):906–912

    Article  CAS  PubMed  Google Scholar 

  22. Sylvester JT, Goldberg HS, Permutt S (1983) The role of the vasculature in the regulation of cardiac output. Clin Chest Med 4(2):111–126

    CAS  PubMed  Google Scholar 

  23. Magder S, De Varennes B (1998) Clinical death and the measurement of stressed vascular volume. Crit Care Med 26(6):1061–1064

    Article  CAS  PubMed  Google Scholar 

  24. Bressack MA, Morton NS, Hortop J (1987) Group B streptococcal sepsis in the piglet: effects of fluid therapy on venous return, organ edema, and organ blood flow. Circ Res 61(5):659–669

    Article  CAS  PubMed  Google Scholar 

  25. Dillon PJ, Columb MO, Hume DD (2001) Comparison of superior vena caval and femoroiliac venous pressure measurements during normal and inverse ratio ventilation. Crit Care Med 29(1):37–39

    Article  CAS  PubMed  Google Scholar 

  26. Amar D, Melendez JA, Zhang H, Dobres C, Leung DH, Padilla RE (2001) Correlation of peripheral venous pressure and central venous pressure in surgical patients. J Cardiothorac Vasc Anesth 15(1):40–43

    Article  CAS  PubMed  Google Scholar 

  27. Hadimioglu N, Ertug Z, Yegin A, Sanli S, Gurkan A, Demirbas A (2006) Correlation of peripheral venous pressure and central venous pressure in kidney recipients. Transplant Proc 38(2):440–442

    Article  CAS  PubMed  Google Scholar 

  28. Osman D, Monnet X, Castelain V, Anguel N, Warszawski J, Teboul JL et al (2009) Incidence and prognostic value of right ventricular failure in acute respiratory distress syndrome. Intensive Care Med 35(1):69–76

    Article  PubMed  Google Scholar 

  29. Mangano DT (1980) Monitoring pulmonary arterial pressure in coronary-artery disease. Anesthesiology 53(5):364–370

    Article  CAS  PubMed  Google Scholar 

  30. Boulain T, Achard JM, Teboul JL, Richard C, Perrotin D, Ginies G (2002) Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest 121(4):1245–1252

    Article  PubMed  Google Scholar 

  31. Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. Chest 121(6):2000–2008

    Article  PubMed  Google Scholar 

  32. Chen FH (1985) Hemodynamic effects of positive pressure ventilation: vena caval pressure in patients without injuries to the inferior vena cava. J Trauma 25(4):347–349

    Article  CAS  PubMed  Google Scholar 

  33. Cheatham ML (2009) Abdominal compartment syndrome: pathophysiology and definitions. Scand J Trauma Resusc Emerg Med 17:10

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheriex EC, Sreeram N, Eussen YF, Pieters FA, Wellens HJ (1994) Cross sectional Doppler echocardiography as the initial technique for the diagnosis of acute pulmonary embolism. Br Heart J 72(1):52–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345(19):1368–1377. Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov’t

    Article  CAS  PubMed  Google Scholar 

  36. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM et al (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39(2):165–228. Practice Guideline

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giraud, R., Bendjelid, K. (2016). Hemodynamic Monitoring Techniques. In: Hemodynamic Monitoring in the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-29430-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29430-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29429-2

  • Online ISBN: 978-3-319-29430-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics