Skip to main content

Monitoring of Cardiac Output and Its Derivatives

  • Chapter
  • First Online:
Hemodynamic Monitoring in the ICU
  • 2548 Accesses

Abstract

The classical pulmonary artery catheter, also called the Swan-Ganz catheter, is a hemodynamic monitoring tool still in use in the ICU. Over the last 15 years, less invasive techniques have been developed, resulting in reduced use of this catheter. In addition, a meta-analysis on the influence of this catheter on the survival of ICU patients showed no benefit in terms of mortality rates [1, 2]. However, it is important to understand what information can be obtained using the present catheter. Here, the authors present the data that can be obtained through the pulmonary artery catheter and the resulting calculations: intravascular pressure, cardiac output (by the thermodilution technique), and mixed venous oxygen saturation levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harvey S, Young D, Brampton W, Cooper AB, Doig G, Sibbald W et al (2006) Pulmonary artery catheters for adult patients in intensive care. Cochrane Database Syst Rev (3):CD003408. [Meta-Analysis Review]

    Google Scholar 

  2. Shah MR, Hasselblad V, Stevenson LW, Binanay C, O’Connor CM, Sopko G et al (2005) Impact of the pulmonary artery catheter in critically ill patients: meta-analysis of randomized clinical trials. JAMA J Am Med Assoc 294(13):1664–1670

    Article  CAS  Google Scholar 

  3. Jansen JR (1995) The thermodilution method for the clinical assessment of cardiac output. Intensive Care Med 21(8):691–697

    Article  CAS  PubMed  Google Scholar 

  4. Rubini A, Del Monte D, Catena V, Attar I, Cesaro M, Soranzo D et al (1995) Cardiac output measurement by the thermodilution method: an in vitro test of accuracy of three commercially available automatic cardiac output computers. Intensive Care Med 21(2):154–158

    Article  CAS  PubMed  Google Scholar 

  5. Levett JM, Replogle RL (1979) Thermodilution cardiac output: a critical analysis and review of the literature. J Surg Res 27(6):392–404

    Article  CAS  PubMed  Google Scholar 

  6. Stetz CW, Miller RG, Kelly GE, Raffin TA (1982) Reliability of the thermodilution method in the determination of cardiac output in clinical practice. Am Rev Respir Dis 126(6):1001–1004

    CAS  PubMed  Google Scholar 

  7. Renner LE, Morton MJ, Sakuma GY (1993) Indicator amount, temperature, and intrinsic cardiac output affect thermodilution cardiac output accuracy and reproducibility. Crit Care Med 21(4):586–597, Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S

    Article  CAS  PubMed  Google Scholar 

  8. Latson TW, Whitten CW, O’Flaherty D (1993) Ventilation, thermal noise, and errors in cardiac output measurements after cardiopulmonary bypass. Anesthesiology 79(6):1233–1243

    Article  CAS  PubMed  Google Scholar 

  9. Synder JV, Powner DJ (1982) Effects of mechanical ventilation on the measurement of cardiac output by thermodilution. Crit Care Med 10(10):677–682

    Article  CAS  PubMed  Google Scholar 

  10. Jansen JR, Schreuder JJ, Settels JJ, Kloek JJ, Versprille A (1990) An adequate strategy for the thermodilution technique in patients during mechanical ventilation. Intensive Care Med 16(7):422–425

    Article  CAS  PubMed  Google Scholar 

  11. Assmann R, Heidelmeyer CF, Trampisch HJ, Mottaghy K, Versprille A, Sandmann W et al (1991) Right ventricular function assessed by thermodilution technique during apnea and mechanical ventilation. Crit Care Med 19(6):810–817

    Article  CAS  PubMed  Google Scholar 

  12. Sasse SA, Chen PA, Berry RB, Sassoon CS, Mahutte CK (1994) Variability of cardiac output over time in medical intensive care unit patients. Crit Care Med 22(2):225–232

    Article  CAS  PubMed  Google Scholar 

  13. Yelderman M (1990) Continuous measurement of cardiac output with the use of stochastic system identification techniques. J Clin Monit 6(4):322–332

    Article  CAS  PubMed  Google Scholar 

  14. Bizouarn P, Blanloeil Y, Pinaud M (1994) Comparison of cardiac output measured continuously by thermodilution and calculated according to Fick’s principle. Ann Fr Anesth Reanim 13(5):685–689 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  15. Boldt J, Menges T, Wollbruck M, Hammermann H, Hempelmann G (1994) Is continuous cardiac output measurement using thermodilution reliable in the critically ill patient? Crit Care Med 22(12):1913–1918

    Article  CAS  PubMed  Google Scholar 

  16. Haller M, Zollner C, Briegel J, Forst H (1995) Evaluation of a new continuous thermodilution cardiac output monitor in critically ill patients: a prospective criterion standard study. Crit Care Med 23(5):860–866

    Article  CAS  PubMed  Google Scholar 

  17. Jakobsen CJ, Melsen NC, Andresen EB (1995) Continuous cardiac output measurements in the perioperative period. Acta Anaesthesiol Scand 39(4):485–488

    Article  CAS  PubMed  Google Scholar 

  18. Lefrant JY, Bruelle P, Ripart J, Ibanez F, Aya G, Peray P et al (1995) Cardiac output measurement in critically ill patients: comparison of continuous and conventional thermodilution techniques. Can J Anaesth J Can Anaesth 42(11):972–976

    Article  CAS  Google Scholar 

  19. Mihaljevic T, von Segesser LK, Tonz M, Leskosek B, Seifert B, Jenni R et al (1995) Continuous versus bolus thermodilution cardiac output measurements – a comparative study. Crit Care Med 23(5):944–949 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  20. Bendjelid K, Schutz N, Suter PM, Romand JA (2006) Continuous cardiac output monitoring after cardiopulmonary bypass: a comparison with bolus thermodilution measurement. Intensive Care Med 32(6):919–922 [Comparative Study]

    Article  PubMed  Google Scholar 

  21. Nelson LD (1996) The new pulmonary arterial catheters. Right ventricular ejection fraction and continuous cardiac output. Crit Care Clin 12(4):795–818

    Article  CAS  PubMed  Google Scholar 

  22. Haddad F, Couture P, Tousignant C, Denault AY (2009) The right ventricle in cardiac surgery, a perioperative perspective: I. Anatomy, physiology, and assessment. Anesth Analg 108(2):407–421

    Article  PubMed  Google Scholar 

  23. Diebel LN, Wilson RF, Tagett MG, Kline RA (1992) End-diastolic volume. A better indicator of preload in the critically ill. Arch Surg 127(7):817–821; discussion 21–22

    Article  CAS  PubMed  Google Scholar 

  24. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B (1999) Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med 27(11):2407–2412 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  25. Goedje O, Peyerl M, Seebauer T, Dewald O, Reichart B (1998) Reproducibility of double indicator dilution measurements of intrathoracic blood volume compartments, extravascular lung water, and liver function. Chest 113(4):1070–1077

    Article  Google Scholar 

  26. Goedje O, Seebauer T, Peyerl M, Pfeiffer UJ, Reichart B (2000) Hemodynamic monitoring by double-indicator dilution technique in patients after orthotopic heart transplantation. Chest 118(3):775–781 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  27. Sakka SG, Reinhart K, Meier-Hellmann A (1999) Comparison of pulmonary artery and arterial thermodilution cardiac output in critically ill patients. Intensive Care Med 25(8):843–846 [Clinical Trial Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  28. Tibby SM, Hatherill M, Marsh MJ, Morrison G, Anderson D, Murdoch IA (1997) Clinical validation of cardiac output measurements using femoral artery thermodilution with direct Fick in ventilated children and infants. Intensive Care Med 23(9):987–991 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  29. Pauli C, Fakler U, Genz T, Hennig M, Lorenz HP, Hess J (2002) Cardiac output determination in children: equivalence of the transpulmonary thermodilution method to the direct Fick principle. Intensive Care Med 28(7):947–952

    Article  CAS  PubMed  Google Scholar 

  30. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 6(12):731–744

    CAS  PubMed  Google Scholar 

  31. Newman EV, Merrell M, Genecin A, Monge C, Milnor WR, Mc KW (1951) The dye dilution method for describing the central circulation. An analysis of factors shaping the time-concentration curves. Circulation 4(5):735–746

    Article  CAS  PubMed  Google Scholar 

  32. Sakka SG, Ruhl CC, Pfeiffer UJ, Beale R, McLuckie A, Reinhart K et al (2000) Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 26(2):180–187

    Article  CAS  PubMed  Google Scholar 

  33. Hofer CK, Furrer L, Matter-Ensner S, Maloigne M, Klaghofer R, Genoni M et al (2005) Volumetric preload measurement by thermodilution: a comparison with transoesophageal echocardiography. Br J Anaesth 94(6):748–755

    Article  CAS  PubMed  Google Scholar 

  34. Michard F, Alaya S, Zarka V, Bahloul M, Richard C, Teboul JL (2003) Global end-diastolic volume as an indicator of cardiac preload in patients with septic shock. Chest 124(5):1900–1908

    Article  PubMed  Google Scholar 

  35. Michard F, Schachtrupp A, Toens C (2005) Factors influencing the estimation of extravascular lung water by transpulmonary thermodilution in critically ill patients. Crit Care Med 33(6):1243–1247

    Article  PubMed  Google Scholar 

  36. Nirmalan M, Willard TM, Edwards DJ, Little RA, Dark PM (2005) Estimation of errors in determining intrathoracic blood volume using the single transpulmonary thermal dilution technique in hypovolemic shock. Anesthesiology 103(4):805–812

    Article  PubMed  Google Scholar 

  37. Reuter DA, Felbinger TW, Moerstedt K, Weis F, Schmidt C, Kilger E et al (2002) Intrathoracic blood volume index measured by thermodilution for preload monitoring after cardiac surgery. J Cardiothorac Vasc Anesth 16(2):191–195

    Article  PubMed  Google Scholar 

  38. Wiesenack C, Prasser C, Keyl C, Rodig G (2001) Assessment of intrathoracic blood volume as an indicator of cardiac preload: single transpulmonary thermodilution technique versus assessment of pressure preload parameters derived from a pulmonary artery catheter. J Cardiothorac Vasc Anesth 15(5):584–588

    Article  CAS  PubMed  Google Scholar 

  39. Katzenelson R, Perel A, Berkenstadt H, Preisman S, Kogan S, Sternik L et al (2004) Accuracy of transpulmonary thermodilution versus gravimetric measurement of extravascular lung water. Crit Care Med 32(7):1550–1554

    Article  PubMed  Google Scholar 

  40. Kirov MY, Kuzkov VV, Kuklin VN, Waerhaug K, Bjertnaes LJ (2004) Extravascular lung water assessed by transpulmonary single thermodilution and postmortem gravimetry in sheep. Crit Care 8(6):R451–R458

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sakka SG, Klein M, Reinhart K, Meier-Hellmann A (2002) Prognostic value of extravascular lung water in critically ill patients. Chest 122(6):2080–2086

    Article  PubMed  Google Scholar 

  42. Ware LB, Matthay MA (2005) Clinical practice. Acute pulmonary edema. N Engl J Med 353(26):2788–2796

    Article  CAS  PubMed  Google Scholar 

  43. Richard C, Teboul JL (2005) Weaning failure from cardiovascular origin. Intensive Care Med 31(12):1605–1607

    Article  PubMed  Google Scholar 

  44. Lemaire F, Teboul JL, Cinotti L, Giotto G, Abrouk F, Steg G et al (1988) Acute left ventricular dysfunction during unsuccessful weaning from mechanical ventilation. Anesthesiology 69(2):171–179

    Article  CAS  PubMed  Google Scholar 

  45. Kuzkov VV, Kirov MY, Sovershaev MA, Kuklin VN, Suborov EV, Waerhaug K et al (2006) Extravascular lung water determined with single transpulmonary thermodilution correlates with the severity of sepsis-induced acute lung injury. Crit Care Med 34(6):1647–1653 [Comparative Study Research Support, Non-U.S. Gov’t]

    Article  PubMed  Google Scholar 

  46. Monnet X, Anguel N, Osman D, Hamzaoui O, Richard C, Teboul JL (2007) Assessing pulmonary permeability by transpulmonary thermodilution allows differentiation of hydrostatic pulmonary edema from ALI/ARDS. Intensive Care Med 33(3):448–453

    Article  PubMed  Google Scholar 

  47. Giraud R, Siegenthaler N, Park C, Beutler S, Bendjelid K (2010) Transpulmonary thermodilution curves for detection of shunt. Intensive Care Med 36(6):1083–1086

    Article  PubMed  Google Scholar 

  48. Martin GS, Eaton S, Mealer M, Moss M (2005) Extravascular lung water in patients with severe sepsis: a prospective cohort study. Crit Care 9(2):R74–R82 [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]

    Article  PubMed  PubMed Central  Google Scholar 

  49. Robotham JL, Takata M, Berman M, Harasawa Y (1991) Ejection fraction revisited. Anesthesiology 74(1):172–183

    Article  CAS  PubMed  Google Scholar 

  50. Combes A, Berneau JB, Luyt CE, Trouillet JL (2004) Estimation of left ventricular systolic function by single transpulmonary thermodilution. Intensive Care Med 30(7):1377–1383

    Article  PubMed  Google Scholar 

  51. Jabot J, Monnet X, Bouchra L, Chemla D, Richard C, Teboul JL (2009) Cardiac function index provided by transpulmonary thermodilution behaves as an indicator of left ventricular systolic function. Crit Care Med 37(11):2913–2918

    Article  PubMed  Google Scholar 

  52. Berkenstadt H, Margalit N, Hadani M, Friedman Z, Segal E, Villa Y et al (2001) Stroke volume variation as a predictor of fluid responsiveness in patients undergoing brain surgery. Anesth Analg 92(4):984–989

    Article  CAS  PubMed  Google Scholar 

  53. Reuter DA, Felbinger TW, Schmidt C, Kilger E, Goedje O, Lamm P et al (2002) Stroke volume variations for assessment of cardiac responsiveness to volume loading in mechanically ventilated patients after cardiac surgery. Intensive Care Med 28(4):392–398

    Article  PubMed  Google Scholar 

  54. Linton R, Band D, O’Brien T, Jonas M, Leach R (1997) Lithium dilution cardiac output measurement: a comparison with thermodilution. Crit Care Med 25(11):1796–1800

    Article  CAS  PubMed  Google Scholar 

  55. Linton NW, Linton RA (2001) Estimation of changes in cardiac output from the arterial blood pressure waveform in the upper limb. Br J Anaesth 86(4):486–496

    Article  CAS  PubMed  Google Scholar 

  56. Zollner C, Haller M, Weis M, Morstedt K, Lamm P, Kilger E et al (2000) Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth 14(2):125–129

    Article  CAS  PubMed  Google Scholar 

  57. Berberian G, Quinn TA, Vigilance DW, Park DY, Cabreriza SE, Curtis LJ et al (2005) Validation study of PulseCO system for continuous cardiac output measurement. ASAIO J 51(1):37–40

    Article  PubMed  Google Scholar 

  58. Giraud R, Siegenthaler N, Bendjelid K (2011) Pulse pressure variation, stroke volume variation and dynamic arterial elastance. Crit Care 15(2):414

    Article  PubMed  PubMed Central  Google Scholar 

  59. Desebbe O, Henaine R, Keller G, Koffel C, Garcia H, Rosamel P et al (2013) Ability of the third-generation FloTrac/Vigileo software to track changes in cardiac output in cardiac surgery patients: a polar plot approach. J Cardiothorac Vasc Anesth 27(6):1122–1127

    Article  PubMed  Google Scholar 

  60. Suehiro K, Tanaka K, Funao T, Matsuura T, Mori T, Nishikawa K (2013) Systemic vascular resistance has an impact on the reliability of the Vigileo-FloTrac system in measuring cardiac output and tracking cardiac output changes. Br J Anaesth 111(2):170–177 [Research Support, Non-U.S. Gov’t]

    Article  CAS  PubMed  Google Scholar 

  61. Peyton PJ, Chong SW (2010) Minimally invasive measurement of cardiac output during surgery and critical care: a meta-analysis of accuracy and precision. Anesthesiology 113(5):1220–1235

    Article  PubMed  Google Scholar 

  62. Palmers PJ, Vidts W, Ameloot K, Cordemans C, Van Regenmortel N, De Laet I et al (2012) Assessment of three minimally invasive continuous cardiac output measurement methods in critically ill patients and a review of the literature. Anaesthesiol Intensiv Ther 44(4):188–199

    Google Scholar 

  63. Schloglhofer T, Gilly H, Schima H (2014) Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anaesth J Can Anaesth 61(5):452–479

    Article  Google Scholar 

  64. Linton RA, Band DM, Haire KM (1993) A new method of measuring cardiac output in man using lithium dilution. Br J Anaesth 71(2):262–266

    Article  CAS  PubMed  Google Scholar 

  65. Taylor SH (1966) Measurement of the cardiac output in man. Proc R Soc Med 59(Suppl):35–53

    PubMed  PubMed Central  Google Scholar 

  66. Mahutte CK, Jaffe MB, Chen PA, Sasse SA, Wong DH, Sassoon CS (1994) Oxygen Fick and modified carbon dioxide Fick cardiac outputs. Crit Care Med 22(1):86–95

    Article  CAS  PubMed  Google Scholar 

  67. Keinanen O, Takala J, Kari A (1992) Continuous measurement of cardiac output by the Fick principle: clinical validation in intensive care. Crit Care Med 20(3):360–365 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  68. Ultman JS, Bursztein S (1981) Analysis of error in the determination of respiratory gas exchange at varying FIO2. J Appl Physiol Respir Environ Exerc Physiol 50(1):210–216

    CAS  PubMed  Google Scholar 

  69. Takala J, Keinanen O, Vaisanen P, Kari A (1989) Measurement of gas exchange in intensive care: laboratory and clinical validation of a new device. Crit Care Med 17(10):1041–1047

    Article  CAS  PubMed  Google Scholar 

  70. Bizouarn P, Blanloeil Y, Pinaud M (1995) Comparison between oxygen consumption calculated by Fick’s principle using a continuous thermodilution technique and measured by indirect calorimetry. Br J Anaesth 75(6):719–723 [Clinical Trial Comparative Study Controlled Clinical Trial Research Support, Non-U.S. Gov’t]

    Article  CAS  PubMed  Google Scholar 

  71. Carpenter JP, Nair S, Staw I (1985) Cardiac output determination: thermodilution versus a new computerized Fick method. Crit Care Med 13(7):576–579

    Article  CAS  PubMed  Google Scholar 

  72. Mahutte CK, Jaffe MB, Sassoon CS, Wong DH (1991) Cardiac output from carbon dioxide production and arterial and venous oximetry. Crit Care Med 19(10):1270–1277

    Article  CAS  PubMed  Google Scholar 

  73. Quinn TJ, Weissman C, Kemper M (1991) Continual trending of Fick variables in the critically ill patient. Chest 99(3):703–707

    Article  CAS  PubMed  Google Scholar 

  74. McHardy GJ (1967) The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci 32(2):299–309

    CAS  PubMed  Google Scholar 

  75. Benatar SR, Hewlett AM, Nunn JF (1973) The use of iso-shunt lines for control of oxygen therapy. Br J Anaesth 45(7):711–718

    Article  CAS  PubMed  Google Scholar 

  76. van Heerden PV, Baker S, Lim SI, Weidman C, Bulsara M (2000) Clinical evaluation of the non-invasive cardiac output (NICO) monitor in the intensive care unit. Anaesth Intensive Care 28(4):427–430 [Comparative Study Evaluation Studies]

    PubMed  Google Scholar 

  77. Nilsson LB, Eldrup N, Berthelsen PG (2001) Lack of agreement between thermodilution and carbon dioxide-rebreathing cardiac output. Acta Anaesthesiol Scand 45(6):680–685

    Article  CAS  PubMed  Google Scholar 

  78. Maxwell RA, Gibson JB, Slade JB, Fabian TC, Proctor KG (2001) Noninvasive cardiac output by partial CO2 rebreathing after severe chest trauma. J Trauma 51(5):849–853

    Article  CAS  PubMed  Google Scholar 

  79. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM (1998) Noninvasive monitoring of cardiac output in critically ill patients using transesophageal Doppler. Am J Respir Crit Care Med 158(1):77–83

    Article  CAS  PubMed  Google Scholar 

  80. Monchi M, Thebert D, Cariou A, Bellenfant F, Joly LM, Brunet F et al (1998) Clinical evaluation of the Abbott Qvue-OptiQ continuous cardiac output system in critically ill medical patients. J Crit Care 13(2):91–95

    Article  CAS  PubMed  Google Scholar 

  81. Burchell SA, Yu M, Takiguchi SA, Ohta RM, Myers SA (1997) Evaluation of a continuous cardiac output and mixed venous oxygen saturation catheter in critically ill surgical patients. Crit Care Med 25(3):388–391

    Article  CAS  PubMed  Google Scholar 

  82. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  PubMed  Google Scholar 

  83. Hsia CC, Herazo LF, Ramanathan M, Johnson RL Jr (1995) Cardiac output during exercise measured by acetylene rebreathing, thermodilution, and Fick techniques. J Appl Physiol (1985) 78(4):1612–1616

    CAS  Google Scholar 

  84. Dubin J, Wallerson DC, Cody RJ, Devereux RB (1990) Comparative accuracy of Doppler echocardiographic methods for clinical stroke volume determination. Am Heart J 120(1):116–123

    Article  CAS  PubMed  Google Scholar 

  85. Miller WE, Richards KL, Crawford MH (1990) Accuracy of mitral Doppler echocardiographic cardiac output determinations in adults. Am Heart J 119(4):905–910

    Article  CAS  PubMed  Google Scholar 

  86. Darmon PL, Hillel Z, Mogtader A, Mindich B, Thys D (1994) Cardiac output by transesophageal echocardiography using continuous-wave Doppler across the aortic valve. Anesthesiology 80(4):796–805; discussion 25A

    Article  CAS  PubMed  Google Scholar 

  87. Descorps-Declere A, Smail N, Vigue B, Duranteau J, Mimoz O, Edouard A et al (1996) Transgastric, pulsed Doppler echocardiographic determination of cardiac output. Intensive Care Med 22(1):34–38

    Article  CAS  PubMed  Google Scholar 

  88. Cahalan MK, Foster E (1995) Training in transesophageal echocardiography: in the lab or on the job? Anesth Analg 81(2):217–218

    CAS  PubMed  Google Scholar 

  89. Angelsen BA, Brubakk AO (1976) Transcutaneous measurement of blood flow velocity in the human aorta. Cardiovasc Res 10(3):368–379

    Article  CAS  PubMed  Google Scholar 

  90. Huntsman LL, Stewart DK, Barnes SR, Franklin SB, Colocousis JS, Hessel EA (1983) Noninvasive Doppler determination of cardiac output in man. Clinical validation. Circulation 67(3):593–602

    Article  CAS  PubMed  Google Scholar 

  91. Kristensen BO, Goldberg SJ (1987) Number of cardiac cycles required to accurately determine mean velocity of blood flow in the ascending aorta and pulmonary trunk. Am J Cardiol 60(8):746–747

    Article  CAS  PubMed  Google Scholar 

  92. Singer M (1993) Esophageal Doppler monitoring of aortic blood flow: beat-by-beat cardiac output monitoring. Int Anesthesiol Clin 31(3):99–125

    Article  CAS  PubMed  Google Scholar 

  93. Mehta N, Bennett DE (1986) Impaired left ventricular function in acute myocardial infarction assessed by Doppler measurement of ascending aortic blood velocity and maximum acceleration. Am J Cardiol 57(13):1052–1058

    Article  CAS  PubMed  Google Scholar 

  94. Abrams JH, Weber RE, Holmen KD (1989) Transtracheal Doppler: a new procedure for continuous cardiac output measurement. Anesthesiology 70(1):134–138

    Article  CAS  PubMed  Google Scholar 

  95. Siegel LC, Shafer SL, Martinez GM, Ream AK, Scott JC (1988) Simultaneous measurements of cardiac output by thermodilution, esophageal Doppler, and electrical impedance in anesthetized patients. J Cardiothorac Anesth 2(5):590–595

    Article  CAS  PubMed  Google Scholar 

  96. Perrino AC Jr, O’Connor T, Luther M (1994) Transtracheal Doppler cardiac output monitoring: comparison to thermodilution during noncardiac surgery. Anesth Analg 78(6):1060–1066

    Article  PubMed  Google Scholar 

  97. Schmid ER, Spahn DR, Tornic M (1993) Reliability of a new generation transesophageal Doppler device for cardiac output monitoring. Anesth Analg 77(5):971–979

    Article  CAS  PubMed  Google Scholar 

  98. Klotz KF, Klingsiek S, Singer M, Wenk H, Eleftheriadis S, Kuppe H et al (1995) Continuous measurement of cardiac output during aortic cross-clamping by the oesophageal Doppler monitor ODM 1. Br J Anaesth 74(6):655–660

    Article  CAS  PubMed  Google Scholar 

  99. Spahn DR, Schmid ER, Tornic M, Jenni R, von Segesser L, Turina M et al (1990) Noninvasive versus invasive assessment of cardiac output after cardiac surgery: clinical validation. J Cardiothorac Anesth 4(1):46–59

    Article  CAS  PubMed  Google Scholar 

  100. Kubicek WG, Karnegis JN, Patterson RP, Witsoe DA, Mattson RH (1966) Development and evaluation of an impedance cardiac output system. Aerosp Med 37(12):1208–1212

    CAS  PubMed  Google Scholar 

  101. Bernstein DP (1986) A new stroke volume equation for thoracic electrical bioimpedance: theory and rationale. Crit Care Med 14(10):904–909

    Article  CAS  PubMed  Google Scholar 

  102. Atallah MM, Demain AD (1995) Cardiac output measurement: lack of agreement between thermodilution and thoracic electric bioimpedance in two clinical settings. J Clin Anesth 7(3):182–185 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  103. Doering L, Lum E, Dracup K, Friedman A (1995) Predictors of between-method differences in cardiac output measurement using thoracic electrical bioimpedance and thermodilution. Crit Care Med 23(10):1667–1673

    Article  CAS  PubMed  Google Scholar 

  104. Schoemaker RG, Smits JF (1990) Systolic time intervals as indicators for cardiac function in rat models for heart failure. Eur Heart J 11(Suppl I):114–123 [Research Support, Non-U.S. Gov’t]

    Article  PubMed  Google Scholar 

  105. Castor G, Klocke RK, Stoll M, Helms J, Niedermark I (1994) Simultaneous measurement of cardiac output by thermodilution, thoracic electrical bioimpedance and Doppler ultrasound. Br J Anaesth 72(1):133–138 [Comparative Study]

    Article  CAS  PubMed  Google Scholar 

  106. Donovan KD, Dobb GJ, Woods WP, Hockings BE (1986) Comparison of transthoracic electrical impedance and thermodilution methods for measuring cardiac output. Crit Care Med 14(12):1038–1044

    Article  CAS  PubMed  Google Scholar 

  107. Thomas AN, Ryan J, Doran BR, Pollard BJ (1991) Bioimpedance versus thermodilution cardiac output measurement: the Bomed NCCOM3 after coronary bypass surgery. Intensive Care Med 17(7):383–386

    Article  CAS  PubMed  Google Scholar 

  108. Stover JF, Stocker R, Lenherr R, Neff TA, Cottini SR, Zoller B et al (2009) Noninvasive cardiac output and blood pressure monitoring cannot replace an invasive monitoring system in critically ill patients. BMC Anesthesiol 9:6

    Article  PubMed  PubMed Central  Google Scholar 

  109. Connors AF Jr, Speroff T, Dawson NV, Thomas C, Harrell FE Jr, Wagner D et al (1996) The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA J Am Med Assoc 276(11):889–897

    Article  Google Scholar 

  110. Harvey S, Stevens K, Harrison D, Young D, Brampton W, McCabe C et al (2006) An evaluation of the clinical and cost-effectiveness of pulmonary artery catheters in patient management in intensive care: a systematic review and a randomised controlled trial. Health Technol Assess 10(29):iii–iv, ix–xi, 1–133

    CAS  Google Scholar 

  111. Lees N, Hamilton M, Rhodes A (2009) Clinical review: goal-directed therapy in high risk surgical patients. Crit Care 13(5):231

    Article  PubMed  PubMed Central  Google Scholar 

  112. Funk D, Sebat F, Kumar A (2009) A systems approach to the early recognition and rapid administration of best practice therapy in sepsis and septic shock. Curr Opin Crit Care 15(4):301–307

    Article  PubMed  Google Scholar 

  113. Alhashemi JA, Cecconi M, Hofer CK (2011) Cardiac output monitoring: an integrative perspective. Crit Care 15(2):214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Giraud, R., Bendjelid, K. (2016). Monitoring of Cardiac Output and Its Derivatives. In: Hemodynamic Monitoring in the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-29430-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29430-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29429-2

  • Online ISBN: 978-3-319-29430-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics