Optical Coherence Tomography: Role in Percutaneous Coronary Intervention

  • David L. Ain
  • Robert Gallagher
  • Ik-Kyung JangEmail author


Optical coherence tomography (OCT) is an imaging modality that utilizes back-reflection of near-infrared light. Superior resolution intra-coronary imaging, including assessment of plaque morphology and characteristics as well as imaging stents and post-stent complications have made OCT a powerful research tool, and more recently a clinical tool for guidance of PCI. Visualization of coronary lesions with OCT and their characterization as lipid-rich, fibrous, or fibro-calcific plaque can influence percutaneous coronary intervention (PCI) procedural planning. OCT has contributed significantly to the understanding of culprit lesion pathophysiology in acute coronary syndromes (ACS). ACS culprit lesions have been categorized by OCT features as resulting from plaque rupture, calcific nodule, or plaque erosion. Finally, OCT has proven to be an ideal imaging modality for ensuring optimal results after PCI. OCT can be used to assess for appropriate stent expansion and apposition of the stent with the vessel wall, and is an effective modality for the detection and assessment of stent-edge dissection, incomplete stent apposition, and in-stent tissue protrusion. The resolution of OCT allows for detection and assessment of in-stent neointima proliferation and neoatherosclerosis. A demonstrated safe and effective research instrument, OCT has shown great potential in this clinical role as an adjunctive imaging modality for PCI.


Optical coherence tomography Intra-coronary imaging Acute coronary syndrome Coronary artery disease Intravascular ultrasound Percutaneous coronary intervention Plaque rupture Calcific nodule Plaque erosion Instent restneosis Neointimal proliferation Neoatherosclerosis 


  1. 1.
    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Herrero-Garibi J, Cruz-Gonzalez I, Parejo-Diaz P, Jang IK. Optical coherence tomography: its value in intravascular diagnosis today. Rev Esp Cardiol. 2010;63:951–62.CrossRefPubMedGoogle Scholar
  3. 3.
    Suh WM, Seto AH, Margey RJ, Cruz-Gonzalez I, Jang IK. Intravascular detection of the vulnerable plaque. Circ Cardiovasc Imaging. 2011;4:169–78.CrossRefPubMedGoogle Scholar
  4. 4.
    Barlis P, Gonzalo N, Di Mario C, Prati F, Buellesfeld L, Rieber J, Dalby MC, Ferrante G, Cera M, Grube E, et al. A multicentre evaluation of the safety of intracoronary optical coherence tomography. EuroIntervention. 2009;5:90–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Suter MJ, Nadkarni SK, Weisz G, et al. Intravascular optical imaging technology for investigating the coronary artery. J Am Coll Cardiol Img. 2011;4:1022–39.CrossRefGoogle Scholar
  6. 6.
    Low AF, Kawase Y, Chan YH, et al. In vivo characterization of coronary plaques with conventional grey-scale intravascular ultrasound: correlation with optical coherence tomography. EuroIntervention. 2009;4:626–32.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kawasaki M, Bouma BE, Bressner J, et al. Diagnostic accuracy of optical coherence tomography and integrated backscatter intravascular ultrasoundimages for tissue characterization of human coronary plaques. J Am Coll Cardiol. 2006;48:81–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia-Garcia HM, Gonzalo N, Regar E, et al. Virtual histology and optical coherence tomography: from research to broad clinical application. Heart. 2009;95:132–1374.CrossRefGoogle Scholar
  9. 9.
    Kubo T, Imanishi T, Takarada S, et al. Assessment of culprit lesion morphology in acute myocardial infarction: ability of optical coherence tomography compared with intravascular ultrasound and coronary angioscopy. J Am Coll Cardiol. 2007;50:933–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Takano M, Jang IK, Inami S, et al. In vivo comparison of optical coherence tomography and angioscopy for the evaluation of coronary plaque charactistics. Am J Cardiol. 2008;101:471–6.CrossRefPubMedGoogle Scholar
  11. 11.
    Kume T, Akasaka T, Kawamoto T, Okura H, Watanabe N, Toyota E, Neishi Y, Sukmawan R, Sadahira Y, Yoshida K. Measurement of the thickness of the fibrous cap by optical coherence tomography. Am Heart J. 2006;152(755):e751–4.Google Scholar
  12. 12.
    Raffel OC, Akasaka T, Jang IK. Cardiac optical coherence tomography. Heart. 2008;94:1200–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser S, Aretz HT, Halpern EF, et al. In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation. 2005;111:1551–5.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kubo T, Takashi A, Shite J, et al. OCT compared with IVUS in a coronary lesion assessment. J Am Coll Cardiol Img. 2013;6:1095–104.CrossRefGoogle Scholar
  15. 15.
    Yonetsu T, Kakuta T, Lee T, Takahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M. Impact of plaque morphology on creatine kinase-MB elevation in patients with elective stent implantation. Int J Cardiol. 2011;146:80–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Lee T, Kakuta T, Yonetsu T, Takahashi K, Yamamoto G, Iesaka Y, Fujiwara H, Isobe M. Assessment of echo-attenuated plaque by optical coherence tomography and its impact on post-procedural creatine kinase-myocardial band elevation in elective stent implantation. JACC Cardiovasc Interv. 2011;4:483–91.CrossRefPubMedGoogle Scholar
  17. 17.
    Lee T, Yonetsu T, Koura K, Hishikari K, Murai T, Iwai T, Takagi T, Iesaka Y, Fujiwara H, Isobe M, et al. Impact of coronary plaque morphology assessed by optical coherence tomography on cardiac troponin elevation in patients with elective stent implantation. Circ Cardiovasc Interv. 2011;4:378–86.CrossRefPubMedGoogle Scholar
  18. 18.
    Porto I, Di Vito L, Burzotta F, Niccoli G, Trani C, Leone AM, Biasucci LM, Vergallo R, Limbruno U, Crea F. Predictors of periprocedural (type IVa) myocardial infarction, as assessed by frequency-domain optical coherence tomography. Circ Cardiovasc Interv. 2012;5:89–96. S81–86.CrossRefPubMedGoogle Scholar
  19. 19.
    Gonzalo N, Escaned J, Alfonso F, Nolte C, Rodriguez V, Jimenez- Quevedo P, Banuelos C, Fernandez-Ortiz A, Garcia E, Hernandez- Antolin R, et al. Morphometric assessment of coronary stenosis relevance with optical coherence tomography: a comparison with fractional flow reserve and intravascular ultrasound. J Am Coll Cardiol. 2012;59:1080–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Stefano GT, Bezerra HG, Attizzani G, Chamie D, Mehanna E, Yamamoto H, Costa MA. Utilization of frequency domain optical coherence tomography and fractional flow reserve to assess intermediate coronary artery stenoses: conciliating anatomic and physiologic information. Int J Cardiovasc Imaging. 2011;27:299–308.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Garg S, Serruys PW. Coronary stents: current status. J Am Coll Cardiol. 2010;56(56):S1–42.CrossRefPubMedGoogle Scholar
  22. 22.
    Choi SY, Witzenbichler B, Maehara A, Lansky AJ, Guagliumi G, Brodie B, et al. Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy. Circ Cardiovasc Interv. 2011;4(3):239–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Sonoda S, Morino Y, Ako J, Terashima M, Hassan AH, Bonneau HN, et al. Impact of final stent dimensions on long-term results following sirolimus-eluting stentimplantation: serial intravascular ultrasound analysis from the sirius trial. J Am Coll Cardiol. 2004;43(11):1959–63.CrossRefPubMedGoogle Scholar
  24. 24.
    Hong MK, Mintz GS, Lee CW, Park DW, Park KM, Lee BK, et al. Late stent malapposition after drug-eluting stent implantation: an intravascular ultrasound analysis with long-term follow-up. Circulation. 2006;113(3):414–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Doi H, Maehara A, Mintz GS, Yu A, Wang H, Mandinov L, et al. Impact of post-intervention minimal stent area on 9-month follow-up patency of paclitaxel-eluting stents: an integrated intravascular ultrasound analysis from the TAXUS IV, V, and VI and TAXUS ATLAS workhorse, long lesion, and direct stent trials. JACC Cardiovasc Interv. 2009;2(12):1269–75.CrossRefPubMedGoogle Scholar
  26. 26.
    Fujii K, Carlier SG, Mintz GS, Yang YM, Moussa I, Weisz G, et al. Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study. J Am Coll Cardiol. 2005;45(7):995–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Song HG, Kang SJ, Ahn JM, Kim WJ, Lee JY, Park DW, et al. Intravascular ultrasound assessment of optimal stent area to prevent in-stent restenosis after zotarolimus-, everolimus-, and sirolimus-eluting stent implantation. Catheter Cardiovasc Interv. 2014;83(6):873–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Kume T, Okura H, Miyamoto Y, Yamada R, Saito K, Tamada T, et al. Natural history of stent edge dissection, tissue protrusion and incomplete stent apposition detectable only on optical coherence tomography after stent implantation: preliminary observation. Circ J. 2012;76:698–703.CrossRefPubMedGoogle Scholar
  29. 29.
    Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Garcia-Garcia HM, Onuma Y, et al. Relation between plaque type and dissections at the edges after stent implantation: an optical coherence tomography study. Int J Cardiol. 2011;150:151–5.CrossRefPubMedGoogle Scholar
  30. 30.
    Gonzalo N, Serruys PW, Okamura T, Shen ZJ, Onuma Y, Garcia-Garcia HM, et al. Optical coherence tomography assessment of the acute effects of stent implantation on the vessel wall: a systematic quantitative approach. Heart. 2009;95:1913–9.CrossRefPubMedGoogle Scholar
  31. 31.
    Kubo T, Imanishi T, Kibata H, Kuroi A, Ueno S, Yamano T, et al. Comparison of vascular response after sirolimus-eluting stent implantation between patients with unstable and stable angina pectoris: a serial optical coherence tomography study. JACC Cardiovasc Imaging. 2008;1:475–84.CrossRefPubMedGoogle Scholar
  32. 32.
    Soeda T, Uemura S, Park S-J, Jang Y, Lee S, Vergallo R, et al. Incidence and Clinical Significance of Poststent Optical Coherence Tomography Findings: One-Year Follow-Up Study From a Multicenter Registry. Circulation. 2015;132:1020–9.Google Scholar
  33. 33.
    Bouma BE, Tearney GJ, Yabushita H, Shishkov M, Kauffman CR, DeJoseph Gauthier D, et al. Evaluation of intracoronary stenting by intravascular optical coherence tomography. Heart. 2003;89:317–20.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tanigawa J, Barlis P, Dimopoulos K, Dalby M, Moore P, Di Mario C. The influence of strut thickness and cell design on immediate apposition of drug-eluting stents assessed by optical coherence tomography. Int J Cardiol. 2009;134(2):180–8.CrossRefPubMedGoogle Scholar
  35. 35.
    Fujino Y, Bezerra HF, Attizzani GF, Wang W, Yamamoto H, Chamié D, et al. Frequency-domain optical coherence tomography assessment of unprotected left main coronary artery disease-a comparison with intravascular ultrasound. Catheter Cardiovasc Interv. 2013;82(3):E173–83.CrossRefPubMedGoogle Scholar
  36. 36.
    Jang IK, Tearney G, Bouma B. Visualization of tissue prolapse between coronary stent struts by optical coherence tomography: comparison with intravascular ultrasound. Circulation. 2001;104:2754.CrossRefPubMedGoogle Scholar
  37. 37.
    Kawamori H, Shite J, Shinke T, Otake H, Matsumoto D, Nakagawa M, et al. Natural consequence of post-intervention stent malapposition, thrombus, tissue prolapse, and dissection assessed by optical coherence tomography at mid-term follow-up. Eur Heart J Cardiovascular Imaging. 2013;14(9):865–75.CrossRefGoogle Scholar
  38. 38.
    Cook S, Wenaweser P, Togni M, Billinger M, Morger C, Seiler C, et al. Incomplete stent apposition and very late stent thrombosis after drug-eluting stent implantation. Circulation. 2007;115:2426–34.CrossRefPubMedGoogle Scholar
  39. 39.
    Sawada T, Shite J, Shinke T, Tanino Y, Ogasawara D, Kawamori H, et al. Very late thrombosis of sirolimus-eluting stent due to late malapposition: serial observations with optical coherence tomography. J Cardiol. 2008;52:290–5.CrossRefPubMedGoogle Scholar
  40. 40.
    Guagliumi G, Sirbu V, Musumeci G, Gerber R, Biondi-Zoccai G, Ikejima H, et al. Examination of the in vivo mechanisms of late drug-eluting stent thrombosis: findings from optical coherence tomography and intravascular imaging. JACC Cardiovasc Interv. 2012;5:12–20.CrossRefPubMedGoogle Scholar
  41. 41.
    Gutierrez-Chico JL, Regar E, Nuesch E, Okamura T, Wykrykowska J, di Mario C, Windecker S, van Es GA, et al. Delayed coverage in malapposed and side-branch stents: in vivo assessment with optical coherence tomography. Circulation. 2011;124:612–23.CrossRefPubMedGoogle Scholar
  42. 42.
    Chamié D, Bezerra HG, Attizzani GF, Yamamoto H, Kanaya T, Stefano GT, et al. Incidence, predictors, morphological characteristics, and clinical outcomes of stent edge dissections detected by optical coherence tomography. JACC Cardiovasc Interv. 2013;6(8):800–13.CrossRefPubMedGoogle Scholar
  43. 43.
    De Cock D, Bennett J, Ughi GJ, Dubois C, Sinnaeve P, Dhooge J, et al. Healing course of acute vessel wall injury after drug-eluting stent implantation assessed by optical coherence tomography. Eur Heart J Cardiovasc Imaging. 2014;15(7):800–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Imola F, Occhipinti M, Biondi-Zoccai G, Di Vito L, Ramazzotti V, Manzoli A, et al. Association between proximal stent edge positioning on atherosclerotic plaques containing lipid pools and postprocedural myocardial infarction (from the CLI-POOL Study). Am J Cardiol. 2013;111:526–31.CrossRefPubMedGoogle Scholar
  45. 45.
    Kim JS, Hong MK, Fan C, Kim TH, Shim JM, Park SM, et al. Intracoronary thrombus formation after drug-eluting stents implantation: optical coherence tomographic study. Am Heart J. 2010;159(2):278–83.CrossRefPubMedGoogle Scholar
  46. 46.
    Gonzalo N, Serruys PW, Okamura T, van Beusekom HM, Garcia-Garcia HM, von Soest G, et al. Optical coherence tomography patterns of stent restenosis. Am Heart J. 2009;158:284–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Nagai H, Ishibashi-Ueda H, Fujii K. Histology of highly echolucent regions in optical coherence tomography images from two patients with sirolimus-eluting stent restenosis. Catheter Cardiovasc Interv. 2010;75:961–3.PubMedGoogle Scholar
  48. 48.
    Kume T, Akasaka T, Kawamoto T, Watanabe N, Toyota E, Sukmawan R, et al. Visualization of neointima formation by optical coherence tomography. Heart J. 2005;46:1133–6.Google Scholar
  49. 49.
    Nakazawa G, Otsuka F, Nakano M, Vorpahl M, Yazdani SK, Ladich E, et al. The pathology of neoatherosclerosis in human coronary implants bare-metal and drug-eluting stents. J Am Coll Cardiol. 2011;57(11):1314–22.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Takano M, Yamamoto M, Inami S, Murakami D, Ohba T, Seino Y, Mizuno K. Appearance of lipid-laden intima and neovascularization after implantation of bare-metal stents extended late-phase observation by intracoronary optical coherence tomography. J Am Coll Cardiol. 2009;55(1):26–32.CrossRefPubMedGoogle Scholar
  51. 51.
    Hou J, Qi H, Zhang M, Ma L, Liu H, Han Z, et al. Development of lipid-rich plaque inside bare metal stent: possible mechanism of late stent thrombosis? An optical coherence tomography study. Heart. 2010;96(15):1187–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Yamaji K, Inoue K, Nakahashi T, Noguchi M, Domei T, Hyodo M, et al. Bare metal stent thrombosis and in-stent neoatherosclerosis. Circulation. 2012;5:47–54.PubMedGoogle Scholar
  53. 53.
    Kim JS, Kato K, Kim SJ, Xing L, Yeh RW, et al. Comparison of incidence and time course of neoatherosclerosis between bare metal stents and drug-eluting stents using optical coherence tomography. Am J Cardiol. 2012;110(7):933–9.CrossRefPubMedGoogle Scholar
  54. 54.
    Serruys PW, Onuma Y, Dudek D, Smits PC, Koolen J, Chevalier B, et al. Evaluation of the second generation of a bioresorbable everolimus-eluting vascular scaffold for the treatment of de novo coronary artery stenosis 12-month clinical and imaging outcomes. J Am Coll Cardiol. 2011;58:1578–87.CrossRefPubMedGoogle Scholar
  55. 55.
    Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet. 2009;373:897–910.CrossRefPubMedGoogle Scholar
  56. 56.
    Bourantas CV, Serruys PW, Nakatani S, Zhang YJ, Farooq V, Diletti R, et al. Bioresorbable vascular scaffold treatment induces the formation of neointimal cap that seals the underlying plaque without compromising the luminal dimensions: a concept based on serial optical coherence tomography data. EuroIntervention. 2015;11:746–56.Google Scholar
  57. 57.
    Okamura T, Onuma Y, Garcia-Garcia HM, Regar E, Wykrzkowska JJ, Koolen J, et al. 3-dimensional optical coherence tomography assessment of jailed side branches by bioresorbable vascular scaffolds: a proposal for classification. J Am Coll Cardiol Intv. 2010;3:836–44.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David L. Ain
    • 1
  • Robert Gallagher
    • 1
  • Ik-Kyung Jang
    • 1
    • 2
    Email author
  1. 1.Cardiology DivisionMassachusetts General HospitalBostonUSA
  2. 2.Cardiology DivisionHarvard Medical SchoolBostonUSA

Personalised recommendations