Skip to main content

The Offshore Environment

  • Chapter
  • First Online:
Floating Offshore Wind Energy

Part of the book series: Green Energy and Technology ((GREEN))

  • 2768 Accesses

Abstract

An accurate assessment of the offshore environment, including the meteorological, oceanographic and other relevant environmental conditions, is fundamental to the design of FOWTs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

References (1)

  • American Meteorological Society (2015) Aerodynamic roughness length. Glossary of meteorology. http://glossary.ametsoc.org/wiki/aerodynamic_roughness_length. Accessed 20 May 2015

  • Ayotte KW (2008) Computational modelling for wind energy assessment. J Wind Eng Ind Aerodyn 96:1571–1590

    Article  Google Scholar 

  • Barry R, Chorley RJ (1998) Atmopshere, weather and climate, 7th edn. Routledge, London

    Google Scholar 

  • Barthelmie RJ, Courtney MS, Højstrup J, Larsen SE (1996) Meteorological aspects of offshore wind energy: observations from the Vindeby wind farm. J Wind Eng Ind Aerodyn 62:191–211

    Article  Google Scholar 

  • Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, Chichester

    Book  Google Scholar 

  • Carta JA, VelĂ¡zquez S, Cabrera P (2013) A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site. Renew Sustain Energ Rev 27:362–400

    Article  Google Scholar 

  • Coelingh JP, Van Wijk AJM, Holtslag AAM (1996) Analysis of wind speed observations over the North Sea. J Wind Eng Ind Aerodyn 61:51–69

    Article  Google Scholar 

  • Cradden L, Harrison G, Chick J (2012) Will climate change impact on wind power development in the UK? Clim Change 115:837–852

    Article  Google Scholar 

  • Cradden LC, Restuccia F, Hawkins SL, Harrison GP (2014) Consideration of wind speed variability in creating a regional aggregate wind power time series. Resources 3:215–234

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart J Roy Meteorol Soc 137:553–597

    Article  Google Scholar 

  • DNV-RP-J101 (2011) Use of remote sensing for wind energy assessments. Det Norske Veritas (DNV), Høvik, Norway

    Google Scholar 

  • EUMETSAT (2015) Jason-2. http://www.eumetsat.int/Jason2/. Accessed 29 May 2015

  • Fairall CW, Grachev AA, Bedard AJ, Nishiyama RT (1996) Wind, wave, stress, and surface roughness relationships from turbulence measurements made on R/P FLIP in the SCOPE experiment. NOAA Technical Memo. ERL ETL-268. Boulder, CO, USA

    Google Scholar 

  • Goddard Earth Sciences Data and Information Services Center (2013) MERRA reanalysis

    Google Scholar 

  • Harrison G, Hawkins S, Eager D, Cradden L (2015) Capacity value of offshore wind in Great Britain. Proc Inst Mech Eng Part O J Risk Reliab 229(5):360–372

    Google Scholar 

  • Hasager CB (2014) Offshore winds mapped from satellite remote sensing. Wiley Interdiscip Rev Energ Environ 3:594–603

    Article  Google Scholar 

  • Hasager CB, Barthelmie RJ, Christiansen MB et al (2006) Quantifying offshore wind resources from satellite wind maps: study area the north sea. Wind Energ 9(1–2):63–74

    Article  Google Scholar 

  • Hasager CB, Pena A, Christiansen MB et al (2008) Remote sensing observation used in offshore wind energy. IEEE J Sel Top Appl Earth Obs Remote Sens 1(1):67–79

    Article  Google Scholar 

  • Hawkins S (2012) A high resolution reanalysis of wind speeds over the British Isles for wind energy integration. PhD thesis, University of Edinburgh

    Google Scholar 

  • Hess P, Brezowsky H (1952) Catalogue of european large-scale weather situations (Katalog der GroĂŸwetterlagen Europas) (in German). Bad Kissingen, Germany

    Google Scholar 

  • IEC 61400-1 (2005) Wind turbines—Part 1: design requirements. International Electrotechnical Commission (IEC), Geneva, Switzerland

    Google Scholar 

  • IEC 61400-3 (2009) Wind turbines—Part 3: design requirements for offshore wind turbines. International Electrotechnical Commission (IEC), Geneva, Switzerland

    Google Scholar 

  • James PM (2007) An objective classification method for Hess and Brezowsky Grosswetterlagen over Europe. Theoret Appl Climatol 88:17–42

    Article  Google Scholar 

  • Kendon M, McCarthy M (2015) The UK’s wet and stormy winter of 2013/2014. Weather 70(2):40–47

    Article  Google Scholar 

  • Lange B, Højstrup J (2001) Evaluation of the wind-resource estimation program WAsP for offshore applications. J Wind Eng Ind Aerodyn 89:271–291

    Article  Google Scholar 

  • Lange B, Larsen S, Hojstrup J, Barthelmie RJ (2004) Importance of thermal effects and sea surface roughness for offshore wind resource assessment. J Wind Eng Ind Aerodyn 92:959–988

    Article  Google Scholar 

  • Manwell JF, McGowan JG, Rogers AL (2009) Wind characteristics and resources. In: Wind energy explained, 2nd edn. Wiley, pp 23–89

    Google Scholar 

  • Met Office (2006a) Global marine meteorological observations data, part of the met office integrated data archive system (MIDAS). NCAS British Atmospheric Data Centre, 21 May 2015. http://catalogue.ceda.ac.uk/uuid/77910bcec71c820d4c92f40d3ed3f249

  • Met Office (2006b) UK mean wind data, part of the met office integrated data archive system (MIDAS). NCAS British Atmospheric Data Centre, 21 May 2015. http://catalogue.ceda.ac.uk/uuid/a1f65a362c26c9fa667d98c431a1ad38

  • Met Office (2011) Weather stations. http://www.metoffice.gov.uk/learning/science/first-steps/observations/weather-stations. Accessed 29 May 2015

  • NASA (2015) Missions: RapidScat. NASA (Jet Propulsion Laboratory). http://www.nasa.gov/rapidscat. Accessed 29 May 2015

  • National Data Buoy Center (2014) United States voluntary observing ship program. http://www.vos.noaa.gov/. Accessed 1 May 2015

  • National Data Buoy Center (2015a) National data buoy center. http://www.ndbc.noaa.gov/. Accessed 29 May 2015

  • National Data Buoy Center (2015b) Station 62107—sevenstones lightship. http://www.ndbc.noaa.gov/station_page.php?station=62107. Accessed 1 May 2015

  • Palma JMLM, Castro FA, Ribeiro LF et al (2008) Linear and nonlinear models in wind resource assessment and wind turbine micro-siting in complex terrain. J Wind Eng Ind Aerodyn 96:2308–2326

    Article  Google Scholar 

  • Palutikof JP, Brabson BB, Lister DH, Adcock ST (1999) A review of methods to calculate extreme wind speeds. Meteorol Appl 6:119–132

    Article  Google Scholar 

  • Peña A, Hasager CB, Gryning SE et al (2009) Offshore wind profiling using light detection and ranging measurements. Wind Energ 12:105–124

    Article  Google Scholar 

  • Petersen EL, Mortensen NG, Landberg L et al (1998) Wind power meteorology. Part I: climate and turbulence. Wind Energ 1:25–45

    Article  Google Scholar 

  • Plate EJ (1982) Engineering meteorology: fundamentals of meteorology and their application to problems in environmental and civil engineering. Elsevier Scientific Pub. Co, Amsterdam

    Google Scholar 

  • Pramod Jain PD (2011) Wind resource assessment. In: Wind energy engineering. The McGraw-Hill Companies, Inc, New York

    Google Scholar 

  • Pryor SC, Barthelmie RJ, Kjellström E (2005) Potential climate change impact on wind energy resources in northern Europe: analyses using a regional climate model. Clim Dyn 25:815–835

    Article  Google Scholar 

  • Rienecker MM, Suarez MJ, Gelaro R et al (2011) MERRA: NASA’s modern-era retrospective analysis for research and applications. J Clim 24:3624–3648

    Article  Google Scholar 

  • Risien CM, Chelton DB (2006) A satellite-derived climatology of global ocean winds. Remote Sens Environ 105:221–236

    Article  Google Scholar 

  • Saha S, Moorthi S, Pan H-L et al (2010) The NCEP climate forecast system reanalysis. Bull Am Meteorol Soc 91:1015–1057

    Article  Google Scholar 

  • Sempreviva AM, Barthelmie RJ, Pryor SC (2008) Review of methodologies for offshore wind resource assessment in European seas. Surv Geophys 29:471–497

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J et al (2008) A description of the advanced research WRF version 3. NCAR Techical Note

    Google Scholar 

  • Smith DA, Harris M, Coffey AS et al (2006) Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energ 9:87–93

    Article  Google Scholar 

  • Strahler AH, Strahler AN (1992) Modern physical geography, 4th edn. Wiley, New York

    Google Scholar 

  • Stull RB (1988) An introduction to boundary layer meteorology. Springer, Netherlands

    Book  MATH  Google Scholar 

  • Taylor PK, Kent EC, Yelland MJ, Moat BI (1999) The accuracy of marine surface winds from ships and buoys. In: Proceedings of the CLIMAR 99, WMO workshop on advances in marine climatology, Vancouver, Canada, 8–15 Sept 1999

    Google Scholar 

  • Troen I, Lundtang Petersen E (1989) European wind atlas. Risø Laboratory, Roskilde

    Google Scholar 

  • Uppala SM, KĂ…llberg PW, Simmons AJ et al (2005) The ERA-40 re-analysis. Quart J Royal Meteorol Soc 131:2961–3012

    Article  Google Scholar 

  • Van Wijk AJM, Beljaars ACM, Holtslag AAM, Turkenburg WC (1990) Evaluation of stability corrections in wind speed profiles over the North Sea. J Wind Eng Ind Aerodyn 33:551–566

    Article  Google Scholar 

  • Watson S, Hughes J (2014) Mesoscale modelling of the UK offshore wind resource. In: Proceedings of the European wind energy association annual event. Barcelona, Spain, 10–3 Mar 2014

    Google Scholar 

  • Weissman DE, Bourassa MA, Tongue J (2002) Effects of rain rate and wind magnitude on seawinds scatterometer wind speed errors. J Atmos Oceanic Technol 19:738–746

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Layer Meteorol 99:127–150

    Article  Google Scholar 

  • World Meteorological Organization (2008) Guide to meteorological instruments and methods of observation, 7th edn. WMO-No. 8, Geneva, Switzerland, pp I.15–1 to I.15–11–II.2–10 to II.2–11

    Google Scholar 

References (2)

  • Barstow SF, Kollstad T (1991) Field trials of the directional waverider. In: Proceedings of the 1st international offshore and polar engineering conference (ISOPE), Edinburgh, UK, 11–16 Aug 1991

    Google Scholar 

  • Barstow S, Mørk G, Lønseth L et al (2003) WORLDWAVES: fusion of data from many sources in a user-friendly software package for timely calculation of wave statistics in global coastal waters. In: Proceedings of the 13th international offshore and polar engineering conference (ISOPE), Honolulu, Hawaii, USA, 25–30 May 2003

    Google Scholar 

  • Barstow SF, Mørk G, Lønseth L, Mathisen JP (2009) WorldWaves wave energy resource assessment from the deep ocean to the coast. In: Proceedings of the 8th European wave and tidal energy conference (EWTEC), Uppsala, Sweden, 7–10 Sept 2009

    Google Scholar 

  • Battjes JA (1978) Engineering aspects of ocean waves and currents. Seminar on safety of structures under dynamic loading. Trondheim, Norway

    Google Scholar 

  • Benoit M, Frigaard P, Schaffer HA (1997) Analysing multidirectional wave spectra. In: Proceedings of the 27th IAHR congress, IAHR seminar: multidirectional waves and their interaction with structures, San Francisco, USA, 10–15 Aug 1997

    Google Scholar 

  • Bitner-Gregersen EM, Haver S (1989) Joint long term description of environmental parameters for structural response calculation. In: Proceedings of the 2nd international workshop on wave hindcasting and forecasting, Vancouver, B.C. Canada, 25–28 Apr 1989

    Google Scholar 

  • Bitner-Gregersen EM, Haver S (1991) Joint environmental model for reliability calculations. In: Proceedings of the 1st international offshore and polar engineering conference (ISOPE), Edinburgh, UK, 11–16 Aug 1991

    Google Scholar 

  • Challenor PG, Foale S, Webb DJ (1990) Seasonal changes in the global wave climate measured by the Geosat altimeter. Int J Remote Sens 11(12):2205–2213

    Article  Google Scholar 

  • Danish Hydraulic Institute (DHI) (2015) MIKE 21 wave modelling, MIKE 21 spectral waves FM, short description. DHI, Denmark

    Google Scholar 

  • Der-Kiureghian A, Liu P-L (1986) Structural reliability under incomplete probability information. J Eng Mech ASCE 112(1):85–104

    Article  Google Scholar 

  • DNV-RP-C205 (2010) Environmental conditions and environmental loads. Det Norske Veritas (DNV), Høvik, Norway

    Google Scholar 

  • Forristal GZ (1978) On the statistical distribution of wave heights in a storm. J Geophys Res Oceans 83(C5):2353–2358

    Article  Google Scholar 

  • Goda Y (2000) Random sea and design of maritime structures, 2nd edn. Advanced Series on Ocean Engineering, World Scientific Publishing Company, Singapore

    Google Scholar 

  • Guedes Soares C (1984) Representation of double-peaked spectra. Ocean Eng 11:185–207

    Article  Google Scholar 

  • Gunther H, Hasselmann S, Janssen PAEM (1992) The WAM model cycle 4. DKRZ technical report no. 4, Hamburg, Oct 1992

    Google Scholar 

  • Hasselmann K (1962) On the non-linear energy transfer in a gravity-wave spectrum, Part 1: general theory. J Fluid Mech 12:481–500

    Article  MathSciNet  MATH  Google Scholar 

  • Hasselmann K (1963) On the non-linear energy transfer in a gravity-wave spectrum, Part 2: conservation laws, wave-particle correspondence, irreversibility. J Fluid Mech 15:273–281

    Article  MathSciNet  MATH  Google Scholar 

  • Hasselman K, Barnett TP, Bouws E et al (1973) Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Dtsch Hydrogr Z, Suppl 12:A8

    Google Scholar 

  • Integrated Ocean Observing System (IOOS) (2013) Manual for real-time quality control of in-situ surface wave data: a guide to quality control and quality assurance of in-situ surface wave observations, ver. 1.0. June 2013

    Google Scholar 

  • Komen GJ, Cavaleri L, Donelan M et al (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Krogstad HE, Barstow SF (1999) Satellite wave measurements for coastal engineering applications. Coast Eng 37:283–307

    Article  Google Scholar 

  • Mathiesen M, Mayer AK, Kvingedal B (2014) Hywind Buchan deep—Metocean design basis, rev. 2. Statoil document number RE2014-002, May 2014

    Google Scholar 

  • Munk WH (1950) Origin and generation of waves. In: Proceedings of the 1st international conference on coastal engineering, long beach, California. ASCE, pp 1–4

    Google Scholar 

  • Ochi MK, Hubble EN (1976) Six-parameters wave spectra. In: Proceedings of the 15th coastal engineering conference, Honolulu, Hawaii, USA, 1–17 July 1976

    Google Scholar 

  • Pierson WJ, Moskowitz L (1964) A proposed spectral form for fully developed wind seas based on the similarity theory of S.A. Kitaigorodskii. J Geophys Res 69(24):5181–5190

    Article  Google Scholar 

  • Pontes MT, Athanassoulis GA, Barstow S et al (1996) An atlas of the wave energy resource in Europe. J Offshore Mech Arct Eng 118(4):307–309

    Article  Google Scholar 

  • Prince-Wright R (1995) Maximum likelihood models of joint environmental data for TLP design, In: Proceedings of the 14th international conference in offshore mechanics and arctic engineering, vol 2, ASME, New York, USA, pp 535–445

    Google Scholar 

  • Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions: 2. Verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  • Sarpkaya T, Isaacson M (1981) Mechanics of wave forces on offshore structures. Van Nostrand Reinhold Company, Melbourne

    Google Scholar 

  • Smith H, Maisondieu C (2014) Resource assessment for Cornwall, Isles of Scilly and PNMI—Task 1.2 of WP3 from the MERiFIC Project: marine energy in far peripheral and island communities. MERiFIC Project, University of Exeter and Ifremer, Apr 2014

    Google Scholar 

  • Strekalov SS, Tsyploukhin VP, Massel SR (1972) Structure of sea wave frequency spectrum. In: Proceedings of the 13th international conference on coastal engineering, vol 1. ASCE, pp 307–314

    Google Scholar 

  • SWAN Team (2006) SWAN technical documentation, SWAN cycle III version 40.51. [Online]. Available at: www.swan.tudelft.nl. Accessed 18 Mar 2016

  • SWAN Team (2009) SWAN user manual, SWAN cycle III version 40.72ABCDE [Online]. Available at: www.swan.tudelft.nl. Accessed 18 Mar 2016

  • Torsethaugen K (1993) A two peaked wave spectrum model. In: Proceedings of the 12th international conference on offshore mechanics and arctic engineering (OMAE), Glasgow, UK, 20–24 June 1993

    Google Scholar 

  • Tucker MJ (1993) Recommended standard for wave data sampling and near real-time processing. Ocean Eng 20:459–474

    Article  Google Scholar 

  • Tucker MJ, Pitt EG (2001) Waves in ocean engineering. In: Bhattacharyya R, McCormick ME (eds) Elsevier ocean engineering series, vol 5. Elsevier Science & Technology, Oxford

    Google Scholar 

  • WAMDI Group (1988) The WAM model—a third generation ocean wave prediction model. J Phys Oceanogr 18(12):1775–1810

    Article  Google Scholar 

  • Winterstein S, Ude TC, Cornell CA et al (1993) Environmental parameters for extreme response: inverse FORM with omission sensitivity. In: Proceedings of the ICOSSAR-93, Innsbruck, Austria, 9–13 Aug 1993

    Google Scholar 

  • Young IR (1999) Wind generated ocean waves. In: Bhattacharyya R, McCormick ME (eds) Elsevier ocean engineering series, vol 2. Elsevier Science & Technology, Oxford

    Google Scholar 

References (3)

  • Albini P, Musson RMW, Gomez Capera AA et al (2013) Global historical earthquake archive and catalogue (1000-1903). GEM technical report 2013-01 V1.0.0, GEM Foundation, Pavia, Italy

    Google Scholar 

  • American Bureau of Shipping (ABS) (2013) Guide for building and classing floating offshore wind turbine installations. ABS Guideline #195. Houston, TX, USA

    Google Scholar 

  • Battisti L, Fedrizzi R, Brighenti A, Laakso T (2006) Sea ice and icing risk for offshore wind turbines. In: Proceedings of the OWEMES 2006, Civitavecchia, Italy, 20–22 Apr 2006

    Google Scholar 

  • Boon J (2004) Secrets of the tide: tide and tidal current analysis and predictions, storm surges and sea level trends. Horwood Publishing Ltd, Chichester

    Google Scholar 

  • Boyer TP, Antonov JI, Baranova OK et al (2013) World ocean database 2013. NOAA Atlas NESDIS 72, Ed. Levitus S, Technical Ed. Mishonov A. Silver Spring, MD, USA, 209 pp

    Google Scholar 

  • DNV-OS-J101 (2014) Design of offshore wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway

    Google Scholar 

  • DNV-OS-J103 (2013) Design of floating wind turbine structures. Det Norske Veritas (DNV), Høvik, Norway

    Google Scholar 

  • DNV-RP-C205 (2010) Environmental conditions and environmental loads. Det Norske Veritas (DNV), Høvik, Norway

    Google Scholar 

  • GLOSS (2016) GLOSS station handbook. http://www.gloss-sealevel.org/station_handbook/. Accessed 28 Mar 2016

  • Health and Safety Executive (2003) An appraisal of existing seismic hazard estimates for the UK continental shelf. Research report 166. ISBN 0 7176 2778 0

    Google Scholar 

  • IEA Wind (2012) Expert group study on recommended practices, 13. Wind energy projects in cold climates, edn 1. International Energy Agency, May 2012

    Google Scholar 

  • IEA Wind Task 19 (2012) State-of-the-art of wind energy in cold climates. International Energy Agency, Oct 2012

    Google Scholar 

  • IEC 61400-3 (2009) Wind turbines—part 3: design requirements for offshore wind turbines. International Electrotechnical Commission (IEC), Geneva, Switzerland

    Google Scholar 

  • Integrated Ocean Observing System (IOOS) (2015) Manual for real-time quality control of in-situ current observations: a guide to quality control and quality assurance of acoustic Doppler current profiler observations, Version 2.0. Oct 2015

    Google Scholar 

  • IRIS (2016) IRIS earthquake browser, incorporated reasearch institutions for seismology (IRIS). http://ds.iris.edu/ieb. Accessed 28 Mar 2016

  • ISO 19901-1 (2005) Petroleum and natural gas industries—specific requirements for offshore structures part 1: Metocean design and operating considerations. International Organization for Standardization (ISO), Geneva, Switzerland

    Google Scholar 

  • ISO 19901-2 (2004) Petroleum and natural gas industries—specific requirements for offshore structures part 2: seismic design procedures and criteria. International Organization for Standardization (ISO), Geneva, Switzerland

    Google Scholar 

  • ISO 19901-4 (2003) Petroleum and natural gas industries—specific requirements for offshore structures part 3: geotechnical and foundation design considerations. International Organization for Standardization (ISO), Geneva, Switzerland

    Google Scholar 

  • ISO 19904-1 (2006) Petroleum and natural gas industries—floating offshore structures and mobile offshore units. International Organization for Standardization (ISO), Geneva, Switzerland

    Google Scholar 

  • ISO 19906 (2010) Petroleum and natural gas industries—artic offshore structures. International Organization for Standardization (ISO), Geneva, Switzerland

    Google Scholar 

  • Johnson DR, Boyer TP (2015) Regional climatology of the East Asian seas: an introduction. NOAA Atlas NESDIS 79. Silver Spring, MD, USA, pp 37

    Google Scholar 

  • Jonathan P, Ewans K (2013) Statistical modelling of extreme ocean environments for marine design: a review. Ocean Eng 62:91–109

    Article  Google Scholar 

  • Marine Data Exchange (2016) Marine data exchange. The crown estate. http://www.marinedataexchange.co.uk/. Accessed 28 Mar 2016

  • Matsumoto K, Takanezawa T, Ooe M (2000) Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: a global model and a regional model around Japan. J Oceanogr 56:567–581

    Article  Google Scholar 

  • National Geophysical Data Center/World Data Service (NGDC/WDS) (2016) Global historical tsunamic database. National Geophysical Data Center, NOAA. doi:10.7289/V5PN93H7. Accessed 28 Mar 2016

  • NORSOK Standard (2007) N-003 action and action effects, edn 2. Sept 2007

    Google Scholar 

  • Ocean Data Portal (2016) Ocean data portal. http://www.oceandataportal.org/. Accessed 28 Mar 2016

  • Oliver EC, Sheng J, Thompson KR, Urrego Blanco JR (2012) Extreme surface and near-bottom currents in the northwest Atlantic. Nat Hazards 64:1425–1446

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Pugh DT (1996) Tides, surges and mean sea-level (reprinted with corrections). Wiley, Chichester

    Google Scholar 

  • SeaDataNet (2016) SeaDataNet. Pan-European infrastructure for ocean and marine data management. http://www.seadatanet.org/. Accessed 28 Mar 2016

  • Seidov D, Baranova OK, Biddle M et al (2013) Greenland-Iceland-Norwegian seas regional climatology, Regional Climatology Team. NOAA/NCEI

    Google Scholar 

  • Storchak DA, Di Giacomo D, BondĂ¡r I et al (2013) Public release of the ISC-GEM global instrumental earthquake catalogue (1900-2009). Seismol Res Lett 84(5):810–815

    Article  Google Scholar 

  • Zijl F, Verlaan M, Gerritsen H (2013) Improved water-level forecasting for the Northwest European Shelf and North Sea through direct modelling of tide, surge and non-linear interactions. Ocean Dyn 63:823–847

    Article  Google Scholar 

Download references

Acknowledgments

Lucy Cradden would like to like to thank the following: The UK Met Office for permission to use data from the MIDAS dataset (© Crown Copyright, Met Office), made available via the Centre for Environmental Analysis (CEDA); Professor Gareth Harrison at the University of Edinburgh for permission to use the WRF mesoscale model data; the Global Modeling and Assimilation Office (GMAO) and the GES DISC for the dissemination of MERRA; the European Centre for Medium Range Weather Forecasting (ECMWF) for provision of ERA-40 reanalysis data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mairéad Atcheson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cradden, L., Weywada, P.L., Atcheson, M. (2016). The Offshore Environment. In: Cruz, J., Atcheson, M. (eds) Floating Offshore Wind Energy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29398-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29398-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29396-7

  • Online ISBN: 978-3-319-29398-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics