Skip to main content

Effective Resistance in a Two Layer Mesh

  • Chapter
  • First Online:
  • 1930 Accesses

Abstract

An on-chip power and ground distribution network is commonly modeled as a resistive mesh structure with different vertical and horizontal unit resistances, as shown in Fig. 22.1a [396, 442, 455, 456], where the thickness and width of the metal lines are typically different in orthogonal metal layers. Power and ground networks are illustrated in Fig. 22.1a with, respectively, dark and light gray lines. A mesh structured power network and the corresponding resistive circuit model are illustrated, respectively, in Fig. 22.1b, c. Since the power and ground distribution networks exhibit similar characteristics, only the power network is considered in this chapter. This approach can also be used to determine the effective resistance in any two layer mesh structure with different horizontal and vertical unit resistances.

Two layer orthogonal metal lines connected with vias; (a) two layer power and ground distribution network where the power and ground lines are illustrated, respectively, with dark and light gray, (b) a two layer power distribution network only, and (c) a resistive mesh model of the power distribution network

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S.R. Nassif, Power grid analysis benchmarks, in Proceedings of the IEEE/ACM Asia and South Pacific Design Automation Conference, pp. 376–381, Jan 2008

    Google Scholar 

  2. S. Zhao, K. Roy, C.-K. Koh, Decoupling capacitance allocation and its application to power-supply noise-aware floorplanning. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(1), 81–92 (2002)

    Google Scholar 

  3. M. Popovich, E.G. Friedman, M. Sotman, A. Kolodny, On-chip power distribution grids with multiple supply voltages for high-performance integrated circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Circuits 16(7), 908–921 (2008)

    Google Scholar 

  4. A. Todri, M. Sadowska, F. Maire, C. Matheron, A study of decoupling capacitor effectiveness in power and ground grid networks, in Proceedings of the IEEE International Symposium on Quality Electronic Design, pp. 653–658, Mar 2009

    Google Scholar 

  5. G. Venezian, On the resistance between two points on a grid. Am. J. Phys. 62(11), 1000–1004 (1994)

    Google Scholar 

  6. R. Jakushokas, M. Popovich, A.V. Mezhiba, S. Kose, E.G. Friedman, Power Distribution Networks with On-Chip Decoupling Capacitors, 2nd edn. (Springer, New York, 2011)

    Google Scholar 

  7. J.N. Kozhaya, S.R. Nassif, F.N. Najm, A multigrid-like technique for power grid analysis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 21(10), 1148–1160 (2002)

    Article  Google Scholar 

  8. L. Zlydina, Y. Yagil, 3D power grid modeling, in Proceedings of the IEEE International Conference on Electronics, Circuits and Systems, pp. 129–132, Dec 2004

    Google Scholar 

  9. J. Singh, S.S. Sapatnekar, Partition-based algorithm for power grid design using locality. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 25(4), 664–677 (2006)

    Google Scholar 

  10. K. Lee, A. Barber, Modeling and analysis of multichip module power supply planes. IEEE Trans. Compon. Packag. Manuf. Technol. Pt. B: Adv. Packag. 18(4), 628–639 (1995)

    Google Scholar 

  11. S. Kose, E.G Friedman, Efficient algorithms for fast IR drop analysis exploiting locality. Integr. VLSI J. 45(2), 149–161 (2012).

    Google Scholar 

  12. Y. Ogasahara, M. Hashimoto, T. Kanamoto, T. Onoye, Measurement of supply noise suppression by substrate and deep N-well in 90nm process, in Proceedings of the IEEE Asian Solid-State Circuits Conference, pp. 397–400, Nov 2008

    Google Scholar 

  13. E. Wong, J.R. Minz, S.K. Lim, Decoupling-capacitor planning and sizing for noise and leakage reduction. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(11), 2023–2034 (2007)

    Google Scholar 

  14. J. Rommes, W.H.A. Schilders, Efficient methods for large resistor networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(1), 28–39 (2010)

    Google Scholar 

  15. R. Helinski, J. Plusquellic, Measuring power distribution system resistance variations. IEEE Trans. Semicond. Manuf. 21(3), 444–453 (2008)

    Google Scholar 

  16. A.K. Chandra, P. Raghavan, W.L. Ruzzo, R. Smolensky, The electrical resistance of a graph captures its commute and cover times, in Proceedings of the Annual ACM Symposium on Theory of Computing, pp. 574–586, May 1989

    Google Scholar 

  17. D.J. Klein, M. Randić, Resistance distance. J. Math. Chem. 12, 81–95 (1993)

    Google Scholar 

  18. P. Barooah, J.P. Hespanha, Graph effective resistance and distributed control: spectral properties and applications, in Proceedings of the IEEE Conference on Decision and Control, pp. 3479–3485, Dec 2006

    Google Scholar 

  19. C.R. Paul, Analysis of Linear Circuits (McGraw-Hill, New York, 1989)

    Google Scholar 

  20. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, Mineola, 1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

P.-Vaisband, I., Jakushokas, R., Popovich, M., Mezhiba, A.V., Köse, S., Friedman, E.G. (2016). Effective Resistance in a Two Layer Mesh. In: On-Chip Power Delivery and Management. Springer, Cham. https://doi.org/10.1007/978-3-319-29395-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29395-0_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29393-6

  • Online ISBN: 978-3-319-29395-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics