Skip to main content

Force Sensing by Microrobot on a Chip

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

In this paper, we discuss a force sensing by microrobot called magnetically driven microtool (MMT) in a microfluidic chip. On-chip force sensor is fabricated by assembling layers to neglect the friction issue and it is actuated by permanent magnets, which supply mN order force to stimulate microorganisms. The displacement is magnified by designing beams on the force sensor and the sensor achieved 100 μN resolutions. We succeeded in on-chip stimulation and evaluation of Pleurosira laevis by developed MMT with force sensing structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M.J. Racca, A. Philibert et al., A comparison between diatom-based pH inference models using artificial neural networks (ANN), weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions. J. Paleolimnol. 26, 411–422 (2001)

    Article  Google Scholar 

  2. V.T. Yadugiri, Milking diatoms—a new route to sustainable energy. Curr. Sci. 97(6), 748–750 (2009)

    Google Scholar 

  3. T.V. Ramachandra, D.M. Mahapatra, B. Karthick, Milking diatoms for sustainable energy: biochemical engineering versus gasoline-secreting diatom solar panels. Ind. Eng. Chem. Res. 48, 8769–8788 (2009)

    Article  Google Scholar 

  4. M.E. Fauver, D.L. Dunaway, D.H. Lilienfeld et al., Microfabricated cantilevers for measurement of subcellular and molecular forces. IEEE Trans. Biomed. Eng. 45(7), 891–898 (1998)

    Article  Google Scholar 

  5. Y. Sun, B.J. Nelson, D.P. Potasek et al., A bulkmicrofabricated multi-axis capacitive cellular force sensor using transverse comb drives. J. Micromech. Microeng. 12, 832–840 (2002)

    Article  Google Scholar 

  6. Y. Sun, K.T. Wan, K.P. Roberts et al., Mechanical property characterization of mouse zona pellucida. IEEE Trans. Nanobiosci. 2(4), 279–286 (2003)

    Article  Google Scholar 

  7. K.H. Jeong, C. Keller, L. Lee, Direct force measurements of biomolecular interactions by nanomechanical force gauge. Appl. Phys. Lett. 86, 193901-1–193901-3 (2005)

    Google Scholar 

  8. S. Koch, G. Thayer, A. Corwin et al., Micromachined piconewton force sensor for biophysics investigations. Appl. Phys. Lett. 89, 173901-1–173901-3 (2006)

    Google Scholar 

  9. B. Wacogne, C. Pieralli, C. Roux et al., Measuring the mechanical behaviour of human oocytes with a very simple SU-8 micro-tool. Biomed. Microdevices 10, 411–419 (2008)

    Article  Google Scholar 

  10. M. Nakajima, M.R. Ahmad, S. Kojima et al., Local stiffness measurements of C. elegans by buckling nanoprobes inside an environmental SEM, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2009), pp. 4695–4700

    Google Scholar 

  11. D.J. Cappelleri, G. Piazza, V. Kumar, Two-dimensional, vision-based μN force sensor for microrobotics, in Proceddings of the IEEE Inernational Conference on Robotics and Automation (2009), pp. 1016–1021

    Google Scholar 

  12. K. Ikuta, F. Sato, K. Kadoguchi et al., Optical driven master-slave controllable nanomanipulator with real-time force sensing, in Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (2008), pp. 539–5421

    Google Scholar 

  13. M. Papi, L. Sylla, T. Parasassi et al., Evidence of elastic to plastic transition in the zona pellucida of oocytes using atomic force spectroscopy. Appl. Phys. Lett. 94, 153902-1–153902-3 (2009)

    Article  Google Scholar 

  14. Y. Yamanishi, S. Sakuma, K. Onda et al., Powerful actuation of magnetized microtools by focused magnetic field for particle sorting in a chip. Biomed. Microdevices 10, 411–419 (2008)

    Article  Google Scholar 

  15. M. Hagiwara, T. Kawahara, Y. Yamanishi et al., Driving method of microtool by horizontally arranged permanent magnets for single cell manipulation. Appl. Phys. Lett. 97(0137011-97), 013701–013703 (2010)

    Article  Google Scholar 

  16. M. Hagiwara, T. Kawahara, Y. Yamanishi et al., On-chip magnetically actuated robot with ultrasonic vibration for single cell manipulations. Lab. Chip 11, 2049–2054 (2011)

    Article  Google Scholar 

  17. H.S. Khoo, K.K. Liu, F.G. Tseng, Mechanical strength and interfacial failure analysis of cantilevered SU-8 microposts. J. Micromech. Microeng. 13, 822–831 (2003)

    Article  Google Scholar 

  18. D. Bachmann, B. Schoberle, S. Kuhne et al., Fabrication and characterization of folded SU-8 suspensions for MEMS applications. Sens. Actuators A 130–131, 379–386 (2006)

    Article  Google Scholar 

  19. N. Makita, I. Shihira-Ishikawa, Chloroplast assemblage by mechanical stimulation and its intercellular transmission in diatom cells. Protoplasma 197, 86–95 (1997)

    Article  Google Scholar 

  20. Y. Hanada, K. Sugioka, H. Kawano et al., Nano-aquarium for dynamic observation of living cells fabricated by femtosecond laser direct writing of photostructurable glass. Biomed. Microdevices 10, 403–410 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education, Culture, Sports, Science and Technology, Grant-in-Aid for Scientific Research (22860030) and the Nagoya University Global COE Program, “COE for Education and Research of Micro-Nano Mechatronics”. Finally, we would like to acknowledge Dr. Hiroyuki Kawano, Dr. Ikuko Shihira-Ishikawa, and Dr. Atsushi Miyawaki, RIKEN Brain Science Institute for their great support on P. laevis experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Kawahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kawahara, T., Arai, F. (2017). Force Sensing by Microrobot on a Chip. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics