Skip to main content

Modular Design of Image Based Visual Servo Control for Dynamic Mechanical Systems

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

  • 4164 Accesses

Abstract

This paper presents a modular framework for design of image based visual servo control for fully actuated dynamic mechanical systems. The approach taken uses the formalism of port Hamiltonian systems to track energy exchanged between the mechanical system and virtual potentials or Hamiltonians associated with each image feature. Asymptotic stability of the system is guaranteed by injecting damping to the otherwise conservative system. A simple approach based on full state measurement is presented and then extended to deal with unmeasured relative depth of image features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In Fig. 1 the arrow on the bond should be a half arrow with the hook on the side of the flow variable. However, I was unable to typeset this effectively, and I have chosen to make all bonds full arrows in this paper to make the notation consistent.

References

  1. B. Espiau, F. Chaumette, P. Rives, IEEE Trans. Robot. Autom. 8(3), 313 (1992)

    Article  Google Scholar 

  2. C. Samson, M. Le Borgne, B. Espiau, Robot Control: The Task Function Approach (The Oxford Engineering Science Series (Oxford University Press, Oxford, U.K., 1991)

    Google Scholar 

  3. R. Pissard-Gibollet, P. Rives, in Proceedings of the IEEE International Conference on Robotics and Automation, ICRA’95 (Nagasaki, Japan, 1995), pp. 166–171

    Google Scholar 

  4. S. Hutchinson, G. Hager, P. Corke, IEEE Trans. Robot. Autom. 12(5), 651 (1996)

    Article  Google Scholar 

  5. R. Kelly, IEEE Trans. Robot. Autom. 12(5), 759 (1996)

    Article  Google Scholar 

  6. R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, F. Reyes, IEEE/ASME Trans. Mechatr. 5(1), 39 (2000). doi:10.1109/3516.828588

    Article  Google Scholar 

  7. E. Zergeroglu, D. Dawson, M. de Queiroz, A. Behal, IEEE/ASME Trans. Mechatron. 6, 322 (2001)

    Article  Google Scholar 

  8. B. Bishop, M. Spong, Control Eng. Pract. 7, 423 (1999)

    Article  Google Scholar 

  9. T. Hamel, R. Mahony, IEEE Trans. Robot. Autom. 18(2), 187 (2002)

    Article  Google Scholar 

  10. A. Maruyama, M. Fujita, Adv. Robot. 12(14), 67 (1998)

    Google Scholar 

  11. A. Maruyama, H. Kawai, M. Fujita, in Proceedings of 40th IEEE Conference on Decision and Control, vol. 5 (2001), pp. 4415–4420. doi:10.1109/.2001.980897

  12. M. Fujita, H. Kawai, M.W. Spong, IEEE Control Syst. Technol. 15(1), 40 (2007). doi:10.1109/TCST.2006.883236

    Article  Google Scholar 

  13. H. Kawai, T. Murao, M. Fujita, in Proceedings of IEEE Computer Aided Control System Design IEEE International Conference on Control Applications IEEE International Symposium Intelligent Control (2006), pp. 740–745. doi:10.1109/CACSD-CCA-ISIC.2006.4776738

  14. N. Cowan, J. Weingarten, D. Koditschek, IEEE Trans. Robot. Autom. 18(4), 521 (2002)

    Article  Google Scholar 

  15. R. Kelly, J. Moreno, R. Campa, in 43rd IEEE Conference on Decision and Control (Atlantis, Paradise Island, Bahama, 2004), pp. 4028–4033

    Google Scholar 

  16. T. Murao, H. Kawai, M. Fujita, in IEEE International Conference on Control Applications (Yokohama, Japan, 2010)

    Google Scholar 

  17. N. Papanikolopoulos, P.K. Khosla, T. Kanade, in Proceedings of the American Control Con- ference (1991), pp. 962–967

    Google Scholar 

  18. E. Malis, F. Chaumette, S. Boudet, IEEE Trans. Robot. Autom. 15(2), 238 (1999)

    Article  Google Scholar 

  19. J.A. Piepmeier, A dynamic quasi-newton method for model independent visual servoing (Phd, Georgia Institute of Technology, Atlanta, USA, 1999)

    Google Scholar 

  20. S. Stramigioli, R. Mahony, P. Corke, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (2010), pp. 5302–5308

    Google Scholar 

  21. O. Khatib, JSME Int. J. Ser. C: Dyn. Control Robot. Des. Manuf. 36(3), 277 (1993)

    Google Scholar 

  22. F. Chaumette, in Conflux of vision and control LNCIS, vol. 237 (1998), pp. 66–78

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Australian Research Council through Future Fellowship FT0991771 “Foundations of Vision Based Control of Robotic Vehicles”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahony, R. (2017). Modular Design of Image Based Visual Servo Control for Dynamic Mechanical Systems. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics