Skip to main content

Motion Planning Under Uncertainty Using Differential Dynamic Programming in Belief Space

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

We present an approach to motion planning under motion and sensing un-certainty, formally described as a continuous partially-observable Markov decision process (POMDP). Our approach is designed for non-linear dynamics and observation models, and follows the general POMDP solution framework in which we represent beliefs by Gaussian distributions, approximate the belief dynamics using an extended Kalman filter (EKF), and represent the value function by a quadratic function that is valid in the vicinity of a nominal trajectory through belief space. Using a variant of differential dynamic programming, our approach iterates with second-order convergence towards a linear control policy over the belief space that is locally-optimal with respect to a user-defined cost function. Unlike previous work, our approach does not assume maximum-likelihood observations, does not assume fixed estimator or control gains, takes into account obstacles in the environment, and does not require discretization of the belief space. The running time of the algorithm is polynomial in the dimension of the state space. We demonstrate the potential of our approach in several continuous partially-observable planning domains with obstacles for robots with non-linear dynamics and observation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Bai, D. Hsu, W. Lee, V. Ngo, Monte Carlo value iteration for continuous state POMDPs, in Workshop on the Algorithmic Foundations of Robotics (2010)

    Google Scholar 

  2. D. Bertsekas, Dynamic Programming and Optimal Control (Athena Scientific, 2001)

    Google Scholar 

  3. A. Brooks, A. Makarendo, S. Williams, H. Durrant-Whyte, Parametric POMDPs for planning in continuous state spaces. Robot. Auton. Syst. 54(11), 887–897 (2006)

    Article  Google Scholar 

  4. A. Bry, N. Roy, Rapidly-exploring random belief trees for motion planning under uncertainty, in IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  5. S. Candido, S. Hutchinson, Minimum uncertainty robot navigation using information- guided POMDP planning, in IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  6. N. Du Toit, J. Burdick, Robotic motion planning in dynamic, cluttered, uncertain environments, in IEEE International Conference on Robotics and Automation (2010)

    Google Scholar 

  7. T. Erez, W.D. Smart, A scalable method for solving high-dimensional continuous POMDPs using local approximation, in Conference on Uncertainty in Artificial Intelligence (2010)

    Google Scholar 

  8. K. Hauser, Randomized belief-space replanning in partially-observable continuous spaces, in Workshop on the Algorithmic Foundations of Robotics (2010)

    Google Scholar 

  9. V. Huynh, N. Roy, icLQG: combining local and global optimization for control in information space, in IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  10. D. Jacobson, D. Mayne, Differential Dynamic Programming (American Elsevier Publishing Company Inc., New York, 1970)

    MATH  Google Scholar 

  11. S. LaValle, J. Kuffner, Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  12. L.-Z. Liao, C. Shoemaker, Convergence in unconstrained discrete-time differential dynamic programming. IEEE Trans. Autom. Control 36(6), 692–706 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Li, E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system. Int. J. Control 80(9), 1439–1453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Kaelbling, M. Littman, A. Cassandra, Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Kurniawati, D. Hsu, W. Lee, SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. Robotics: Science and Systems, 2008. configuration spaces. IEEE Trans. Robot. Autom. 12( 4), 566–580 (1996)

    Google Scholar 

  16. S. Ong, S. Png, D. Hsu, W. Lee, Planning under uncertainty for robotic tasks with mixed observability. Int. J. Robot. Res. 29(8), 1053–1068 (2010)

    Article  Google Scholar 

  17. C. Papadimitriou, J. Tsisiklis, The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  Google Scholar 

  18. J. Porta, N. Vlassis, M. Spaan, P. Poupart, Point-based value iteration for continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

    MathSciNet  MATH  Google Scholar 

  19. R. Platt, R. Tedrake, L. Kaelbling, T. Lozano-Perez, Belief space planning assuming maximum likelihood observations, in Robotics: Science and Systems (2010)

    Google Scholar 

  20. S. Prentice, N. Roy, The belief roadmap: efficient planning in belief space by factoring the covariance. Int. J. Robot. Res. 28(1112), 1448–1465 (2009)

    Article  Google Scholar 

  21. S. Thrun, Monte Carlo POMDPs. Advances in Neural Information Processing Systems (The MIT Press, 2000)

    Google Scholar 

  22. S. Thrun, W. Burgard, D. Fox, Probabilistic Robotics (MIT Press, 2005)

    Google Scholar 

  23. E. Todorov, W. Li, A generalized iterative LQG method for locally-optimal feedback control of constrained nonlinear stochastic systems, in American Control Conference (2005)

    Google Scholar 

  24. J. van den Berg, P. Abbeel, K. Goldberg, LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information, in Robotics: Science and Systems (2010)

    Google Scholar 

  25. M.P. Vitus, C.J. Tomlin, Closed-loop belief space planning for linear, Gaussian systems, in IEEE International Conference on Robotics and Automation (2011)

    Google Scholar 

  26. G. Welch, G. Bishop, An introduction to the Kalman filter. Tech. Report TR 95-041, University of North Carolina at Chapel Hill (2006)

    Google Scholar 

  27. S. Yakowitz, Algorithms and computational techniques in differential dynamic programming. Control Dyn. Syst. 31, 75–91 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation (NSF) under grant #IIS-0905344 and by the National Institutes of Health (NIH) under grant #R21EB011628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jur van den Berg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van den Berg, J., Patil, S., Alterovitz, R. (2017). Motion Planning Under Uncertainty Using Differential Dynamic Programming in Belief Space. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics