Skip to main content

Asymptotically Near-Optimal Is Good Enough for Motion Planning

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 100))

Abstract

Asymptotically optimal motion planners guarantee that solutions approach optimal as more iterations are performed. There is a recently proposed roadmap-based method that provides this desirable property, the PRM approach, which minimizes the computational cost of generating the roadmap. Even for this method, however, the roadmap can be slow to construct and quickly grows too large for storage or fast online query resolution. From graph theory, there are many algorithms that produce sparse subgraphs, known as spanners, which can guarantee near optimal paths. In this work, a method for interleaving an incremental graph spanner algorithm with the asymptotically optimal PRM algorithm is described. The result is an asymptotically near-optimal motion planning solution. Theoretical analysis and experiments performed on typical, geometric motion planning instances show that large reductions in construction time, roadmap density, and online query resolution time can be achieved with a small sacrifice of path quality. If smoothing is applied, the results are even more favorable for the near-optimal solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Althöfer, G. Das, D. Dobkin, D. Joseph, J. Soares, On sparse spanners of weighted graphs. Discrete Comput. Geom. 9(1), 81–100 (1993)

    Google Scholar 

  2. N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, D. Vallejo, OBPRM: an obstacle-based PRM for 3D workspaces, in Workshop on the Algorithmic Foundations of Robotics (WAFR) (1998), pp. 155–168

    Google Scholar 

  3. S. Baswana, S. Sen, A simple and linear time randomized algorithm for computing sparse spanners in weighted graphs. Random Struct. Algorithms 30(4), 532–563 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. K. Bekris, L. Kavraki, Informed and probabilistically complete search for motion planning under differential constraints, in First International Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR) (Chicago, IL, 2008)

    Google Scholar 

  5. R. Bohlin, L. Kavraki, Path planning using lazy PRM, in IEEE International Conference on Robotics and Automation (ICRA), vol. 1 (San Francisco, CA, 2000), pp. 521–528

    Google Scholar 

  6. D. Ferguson, A. Stentz, Anytime RRTs, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Beijing, China, 2006), pp. 5369–5375

    Google Scholar 

  7. J. Gao, L.J. Guibas, A. Nguyen, Deformable spanners and applications. Comput. Geometry Theory Appl. 35(1–2), 2–19 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. R. Geraerts, M.H. Overamrs, Creating small graphs for solving motion planning problems, in IEEE International Conference on Methods and Models in Automation and Robotics (MMAR) (2005), pp. 531–536

    Google Scholar 

  9. R. Geraerts, M.H. Overmars, Creating high-quality roadmaps for motion planning in virtual environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Beijing, China, 2006), pp. 4355–4361

    Google Scholar 

  10. R. Geraerts, M.H. Overmars, Reachability-based analysis for probabilistic roadmap planners. J. Robot. Auton. Syst. (RAS) 55, 824–836 (2007)

    Article  Google Scholar 

  11. L.J. Guibas, C. Holleman, L.E. Kavraki, A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1 (1999), pp. 254–259

    Google Scholar 

  12. D. Hsu, R. Kindel, J.C. Latombe, S. Rock, Randomized kinodynamic motion planning with moving obstacles. Int. J. Robot. Res. 21(3), 233–255 (2002)

    Article  MATH  Google Scholar 

  13. L. Jaillet, T. Simeon, Path deformation roadmaps, in Workshop on the Algorithmic Foundations of Robotics (WAFR) (New York City, NY, 2006)

    Google Scholar 

  14. S. Karaman, E. Frazzoli, Sampling-based algorothms for optimal motion planning. Int. J. Robot. Res. 30(7), 846–894 (2011)

    Article  Google Scholar 

  15. S. Karaman, M. Walter, A. Perez, E. Frazzoli, S. Teller, Anytime motion planning using the RRT, in IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China, 2011)

    Google Scholar 

  16. L.E. Kavraki, P. Svestka, J.C. Latombe, M. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. (TRA) 12(4), 566–580 (1996)

    Article  Google Scholar 

  17. J.M. Keil, Approximating the complete Euclidean graph, in 1st Scandinavian Workshop on Algorithm Theory (Springer, London, UK, 1988), pp. 208–213

    Google Scholar 

  18. J. Kim, R.A. Pearce, N.M. Amato, Extracting optimal paths from roadmaps for motion planning, in IEEE International Conference on Robotics and Automation (ICRA), vol. 2 (Taipei, Taiwan, 2003), pp. 2424–2429

    Google Scholar 

  19. S.M. LaValle, J.J. Kuffner, Randomized kinodynamic planning. Int. J. Robot. Res. 20(5), 378–400 (2001)

    Article  Google Scholar 

  20. Y. Li, K.E. Bekris, Learning approximate cost-to-go metrics to improve sampling-based motion planning, in IEEE International Conference on Robotics and Automation (ICRA) (Shanghai, China, 2011)

    Google Scholar 

  21. T. Lozano-Perez, Spatial planning: a configuration space approach. IEEE Trans. Comput. 108–120 (1983)

    Google Scholar 

  22. J.D. Marble, K.E. Bekris, Computing spanners of asympotically optimal probabilistic roadmaps, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (San Francisco, CA, 2011)

    Google Scholar 

  23. M.A. Morales, R. Pearce, N.M. Amato, Metrics for analyzing the evolution of C-space models, in IEEE International Conference on Robotics and Automation (ICRA) (2006), pp. 1268–1273

    Google Scholar 

  24. O. Nechushtan, B. Raveh, D. Halperin, Sampling-diagrams automata: a tool for analyzing path quality in tree planners, in Workshop on the Algorithmic Foundations of Robotics (WAFR) (Singapore, 2010)

    Google Scholar 

  25. D. Nieuwenhuisen, M.H. Overmars, Using cycles in probabilistic roadmap graphs, in IEEE International Conference on Robotics and Automation (ICRA) (2004), pp. 446–452

    Google Scholar 

  26. R. Pearce, M. Morales, N. Amato, Structural improvement filtering strategy for PRM, in Robotics: Science and Systems (RSS) (Zurich, Switzerland, 2008)

    Google Scholar 

  27. D. Peleg, A. Scha¨ffer, Graph spanners. J. Graph Theory 13(1), 99–116 (1989)

    Google Scholar 

  28. E. Plaku, K.E. Bekris, B.Y. Chen, A.M. Ladd, L.E. Kavraki, Sampling-based roadmap of trees for parallel motion planning. IEEE Trans. Robot. Autom. (TRA) 21(4), 587–608 (2005)

    Google Scholar 

  29. B. Raveh, A. Enosh, D. Halperin, a little more, a lot better: improving path quality by a path-merging algorithm. IEEE Trans. Rob. 27(2), 365–370 (2011)

    Article  Google Scholar 

  30. G. Sanchez, J.C. Latombe, A single-query, bi-directional probabilistic roadmap planner with lazy collision checking, in International Symposium on Robotics Research (2001), pp. 403–418

    Google Scholar 

  31. E. Schmitzberger, J.L. Bouchet, M. Dufaut, D. Wolf, R. Husson, Capture of homotopy classes with probabilistic roadmap, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Switzerland, 2002), pp. 2317–2322

    Google Scholar 

  32. T. Simeon, J.P. Laumond, C. Nissoux, Visibility-based probabilistic roadmaps for motion planning. Adv. Robot. J. 41(6), 477–494 (2000)

    Article  Google Scholar 

  33. I.A. Sucan, M. Moll, L.E. Kavraki, The open motion planning library (OMPL) (2010). http://ompl.kavrakilab.org

  34. R. Wein, J. van den Berg, D. Halperin, Planning high-quality paths and corridors amidst obstacles. Int. J. Robot. Res. 27(11–12), 1213–1231 (2008)

    Article  Google Scholar 

  35. D. Xie, M. Morales, R. Pearce, S. Thomas, J.L. Lien, N.M. Amato, Incremental map generation (IMG), in Workshop on Algorithmic Foundations of Robotics (WAFR) (New York City, NY, 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Marble .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Marble, J.D., Bekris, K.E. (2017). Asymptotically Near-Optimal Is Good Enough for Motion Planning. In: Christensen, H., Khatib, O. (eds) Robotics Research . Springer Tracts in Advanced Robotics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-29363-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29363-9_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29362-2

  • Online ISBN: 978-3-319-29363-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics