Skip to main content

Physicochemical Requirements for Polymers and Polymer-Based Nanomaterial for Ophthalmic Drug Delivery

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

Polymers used for constructing ophthalmic nanodelivery systems play a crucial role in determining the drug entrapment capacity, biodegradation, and residence time of the nanoparticles. Polymers used for ophthalmic nanodelivery systems are biodegradable; the biodegradation may be enzymatically or chemically mediated. The physicochemical properties of the polymers such as molecular weight, hydrophobicity/hydrophilicity, polymer/copolymer composition, crystallinity, and glass transition temperature affect particle size, entrapment efficiency, adsorption/absorption pattern, degradation kinetics, and mechanical strength of the nanoparticles. PLGA is the most widely used polymer for ophthalmic delivery because of its biodegradability and flexibility in alteration of the physicochemical properties by altering the copolymer composition. Physicochemical properties of a polymer can be altered by chemical modifications. In-depth understanding of the physicochemical properties of the polymers is important to design a nanodelivery system with optimum drug encapsulation, degradation, and residence time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tamboli V, Mishra GP, Mitra AK (2012) Biodegradable polymers for ocular drug delivery. In: Mitra AK (ed) Advances in ocular drug delivery. Research Signpost, Trivandrum, pp 65–86

    Google Scholar 

  2. Ahmed F, Pakunlu RI, Brannan A, Bates F, Minko T, Discher DE (2006) Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. J Control Release 116(2):150–158, Epub 2006/09/01

    Article  CAS  PubMed  Google Scholar 

  3. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136(1):2–13, Epub 2009/04/01

    Article  CAS  PubMed  Google Scholar 

  4. Sahoo SK, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151, Epub 2008/02/16

    Article  CAS  PubMed  Google Scholar 

  5. Mudgil M, Gupta N, Nagpal M, Pawar P (2012) Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Sci 4(2):105–112

    CAS  Google Scholar 

  6. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3(3):1377–1397, Epub 2012/05/12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Di Colo G, Zambito Y, Burgalassi S, Nardini I, Saettone MF (2004) Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int J Pharm 273(1–2):37–44

    Article  PubMed  Google Scholar 

  8. Nagarwal RC, Kumar R, Pandit JK (2012) Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 47(4):678–685, Epub 2012/08/28

    Article  CAS  PubMed  Google Scholar 

  9. Mahmoud AA, El-Feky GS, Kamel R, Awad GE (2011) Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm 413(1–2):229–236, Epub 2011/05/05

    Article  CAS  PubMed  Google Scholar 

  10. Joshi SA, Chavhan SS, Sawant KK (2010) Rivastigmine-loaded PLGA and PBCA nanoparticles: preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur J Pharm Biopharm 76(2):189–199, Epub 2010/07/20

    Article  CAS  PubMed  Google Scholar 

  11. Katti DS, Lakshmi S, Langer R, Laurencin CT (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54(7):933–961, Epub 2002/10/18

    Article  CAS  PubMed  Google Scholar 

  12. Pak J, Lakes RS (2007) Biomaterials an introduction, 3rd edn. Springer, New York

    Google Scholar 

  13. Azevedo HS, Reis RL (2004) Understanding the enzymatic degradation of biodegradable polymers and strategies to control their degradation rate. In: Reis RL (ed) Biodegradable systems in tissue engineering and regenerative medicine. CRC Press, Boca Raton, pp 177–201

    Google Scholar 

  14. Nordtveit RJ, Vårum KM, Smidsrød O (1996) Degradation of partially N-acetylated chitosans with hen egg white and human lysozyme. Carbohydr Polym 29:163–167

    Article  CAS  Google Scholar 

  15. Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18(7):567–575, Epub 1997/04/01

    Article  CAS  PubMed  Google Scholar 

  16. Mi FL, Tan YC, Liang HC, Huang RN, Sung HW (2001) In vitro evaluation of a chitosan membrane cross-linked with genipin. J Biomater Sci Polym Ed 12(8):835–850, Epub 2001/11/23

    Article  CAS  PubMed  Google Scholar 

  17. Woodruff CW, Peck GE, Banker GS (1972) Dissolution of alkyl vinyl ether-maleic anhydride copolymers and ester derivatives. J Pharm Sci 61(12):1912–1916, Epub 1972/12/01

    Article  CAS  PubMed  Google Scholar 

  18. Kimura H, Ogura Y (2001) Biodegradable polymers for ocular drug delivery. Ophthalmologica 215(3):143–155, Epub 2001/05/08

    Article  CAS  PubMed  Google Scholar 

  19. Matsumoto J, Nakada Y, Sakurai K, Nakamura T, Takahashi Y (1999) Preparation of nanoparticles consisted of poly(L-lactide)-poly(ethylene glycol)-poly(L-lactide) and their evaluation in vitro. Int J Pharm 185(1):93–101, Epub 1999/07/30

    Article  CAS  PubMed  Google Scholar 

  20. Yang H-C, Hon M-H (2009) The effect of the molecular weight of chitosan nanoparticles and its application on drug delivery. Microchem J 92(1):87–91

    Article  CAS  Google Scholar 

  21. Mehta RC, Thanoo BC, Deluca PP (1996) Peptide containing microspheres from low molecular weight and hydrophilic poly(d, l-lactide-co-glycolide). J Control Release 41(3):249–257

    Article  CAS  Google Scholar 

  22. Zambaux MF, Bonneaux F, Gref R, Maincent P, Dellacherie E, Alonso MJ et al (1998) Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method. J Control Release 50(1–3):31–40

    Article  CAS  PubMed  Google Scholar 

  23. Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN (2007) Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 119(1):77–85, Epub 2007/03/14

    Article  CAS  PubMed  Google Scholar 

  24. Araújo J, Vega E, Lopes C, Egea MA, Garcia ML, Souto EB (2009) Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf B Biointerfaces 72(1):48–56

    Article  PubMed  Google Scholar 

  25. Mikos AG, Peppas NA (1986) Systems for controlled release of drugs v. bioadhesive systems. STP Pharm 2:705–716

    Google Scholar 

  26. Dash TK, Konkimalla VB (2012) Poly-small je, Ukrainian-caprolactone based formulations for drug delivery and tissue engineering: a review. J Control Release 158(1):15–33, Epub 2011/10/04

    Article  CAS  PubMed  Google Scholar 

  27. Bilensoy E, Sarisozen C, Esendagli G, Dogan AL, Aktas Y, Sen M et al (2009) Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of Mitomycin C to bladder tumors. Int J Pharm 371(1–2):170–176, Epub 2009/01/13

    Article  CAS  PubMed  Google Scholar 

  28. Park TG (1995) Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 16(15):1123–1130, Epub 1995/10/01

    Article  CAS  PubMed  Google Scholar 

  29. Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V (2004) Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 93(7):1804–1814, Epub 2004/06/04

    Article  CAS  PubMed  Google Scholar 

  30. Sonam HC, Arora V, Koli K, Kumar V (2013) Effect of physicochemical properties of biodegradable polymers on nano drug delivery. Polymer Rev 53(4):546–567

    Article  CAS  Google Scholar 

  31. Youan BB, Benoit MA, Baras B, Gillard J (1999) Protein-loaded poly(epsilon-caprolactone) microparticles. I. Optimization of the preparation by (water-in-oil)-in water emulsion solvent evaporation. J Microencapsul 16(5):587–599, Epub 1999/09/28

    Article  CAS  PubMed  Google Scholar 

  32. Kumar M (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27

    Article  CAS  Google Scholar 

  33. Sabnis S, Block LH (2000) Chitosan as an enabling excipient for drug delivery systems. I. Molecular modifications. Int J Biol Macromol 27(3):181–186, Epub 2000/06/01

    Article  CAS  PubMed  Google Scholar 

  34. Benesch J, Tengvall P (2002) Blood protein adsorption onto chitosan. Biomaterials 23(12):2561–2568, Epub 2002/05/30

    Article  CAS  PubMed  Google Scholar 

  35. Chatelet C, Damour O, Domard A (2001) Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 22(3):261–268, Epub 2001/02/24

    Article  CAS  PubMed  Google Scholar 

  36. Ottoy MHV, Varum KM, Smidsrod O (1996) Compositional heterogeneity of heterogeneously deacetylated chitosans. Carbohydr Polym 29:17–24

    Article  CAS  Google Scholar 

  37. Anthonsen MWV, Varum KM, Smidsrod O (1993) Solution properties of chitosans-confirmation and chain stiffness of chitosans with different degrees. Carbohydr Polym 22:193–201

    Article  CAS  Google Scholar 

  38. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192, Epub 2006/02/07

    Article  CAS  PubMed  Google Scholar 

  39. Badawi AA, El-Laithy HM, El Qidra RK, El Mofty H, El dally M (2008) Chitosan based nanocarriers for indomethacin ocular delivery. Arch Pharm Res 31(8):1040–1049, Epub 2008/09/13

    Article  CAS  PubMed  Google Scholar 

  40. De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224(1–2):159–168, Epub 2001/07/27

    Article  PubMed  Google Scholar 

  41. de Campos AM, Diebold Y, Carvalho EL, Sanchez A, Alonso MJ (2004) Chitosan nanoparticles as new ocular drug delivery systems: in vitro stability, in vivo fate, and cellular toxicity. Pharm Res 21(5):803–810, Epub 2004/06/08

    Article  PubMed  Google Scholar 

  42. De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20(1):73–81, Epub 2003/09/19

    Article  PubMed  Google Scholar 

  43. Gaspard S, Oujja M, Abrusci C, Catalina F, Lazare S, Desvergne JP, Castillejo M (2008) Laser induced foaming and chemical modifications of gelatin films. J Photochem Photobiol A 193:187–192

    Article  CAS  Google Scholar 

  44. Young S, Wong M, Tabata Y, Mikos AG (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109(1–3):256–274, Epub 2005/11/04

    Article  CAS  PubMed  Google Scholar 

  45. Natu MV, Sardinha JP, Correia IJ, Gil MH (2007) Controlled release gelatin hydrogels and lyophilisates with potential application as ocular inserts. Biomed Mater 2(4):241–249, Epub 2008/05/07

    Article  CAS  PubMed  Google Scholar 

  46. Hong Y, Chirila TV, Vijayasekaran S, Shen W, Lou X, Dalton PD (1998) Biodegradation in vitro and retention in the rabbit eye of crosslinked poly(1-vinyl-2-pyrrolidinone) hydrogel as a vitreous substitute. J Biomed Mater Res 39(4):650–659, Epub 1998/03/10

    Article  CAS  PubMed  Google Scholar 

  47. Colthurst MJ, Williams RL, Hiscott PS, Grierson I (2000) Biomaterials used in the posterior segment of the eye. Biomaterials 21(7):649–665, Epub 2000/03/11

    Article  CAS  PubMed  Google Scholar 

  48. Niu G, Yang Y, Zhang H, Yang J, Song L, Kashima M et al (2009) Synthesis and characterization of acrylamide/N-vinylpyrrolidone copolymer with pendent thiol groups for ophthalmic applications. Acta Biomater 5(4):1056–1063, Epub 2008/12/17

    Article  CAS  PubMed  Google Scholar 

  49. Hacker MC, Haesslein A, Ueda H, Foster WJ, Garcia CA, Ammon DM et al (2009) Biodegradable fumarate-based drug-delivery systems for ophthalmic applications. J Biomed Mater Res A 88(4):976–989, Epub 2008/04/04

    Article  CAS  PubMed  Google Scholar 

  50. Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y (2006) Drug delivery from ocular implants. Expert Opin Drug Deliv 3(2):261–273, Epub 2006/03/02

    Article  CAS  PubMed  Google Scholar 

  51. Vega E, Gamisans F, Garcia ML, Chauvet A, Lacoulonche F, Egea MA (2008) PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions. J Pharm Sci 97(12):5306–5317, Epub 2008/04/22

    Article  CAS  PubMed  Google Scholar 

  52. Zentner GM, Rathi R, Shih C, McRea JC, Seo MH, Oh H et al (2001) Biodegradable block copolymers for delivery of proteins and water-insoluble drugs. J Control Release 72(1–3):203–215, Epub 2001/06/08

    Article  CAS  PubMed  Google Scholar 

  53. Duvvuri S, Janoria KG, Mitra AK (2005) Development of a novel formulation containing poly(d, l-lactide-co-glycolide) microspheres dispersed in PLGA-PEG-PLGA gel for sustained delivery of ganciclovir. J Control Release 108(2–3):282–293, Epub 2005/10/19

    Article  CAS  PubMed  Google Scholar 

  54. Duvvuri S, Janoria KG, Pal D, Mitra AK (2007) Controlled delivery of ganciclovir to the retina with drug-loaded Poly(d, L-lactide-co-glycolide) (PLGA) microspheres dispersed in PLGA-PEG-PLGA Gel: a novel intravitreal delivery system for the treatment of cytomegalovirus retinitis. J Ocul Pharm Ther 23(3):264–274, Epub 2007/06/27

    Article  CAS  Google Scholar 

  55. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004) Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm 278(1):1–23, Epub 2004/05/26

    Article  CAS  PubMed  Google Scholar 

  56. Fialho SL, Behar-Cohen F, Silva-Cunha A (2008) Dexamethasone-loaded poly(epsilon-caprolactone) intravitreal implants: a pilot study. Eur J Pharm Biopharm 68(3):637–646, Epub 2007/09/14

    Article  CAS  PubMed  Google Scholar 

  57. Yin H, Gong C, Shi S, Liu X, Wei Y, Qian Z (2010) Toxicity evaluation of biodegradable and thermosensitive PEG-PCL-PEG hydrogel as a potential in situ sustained ophthalmic drug delivery system. J Biomed Mater Res B Appl Biomater 92(1):129–137, Epub 2009/10/06

    Article  PubMed  Google Scholar 

  58. Adjadj E, Roy S, Zimmermann C, Shaarawy T, Flammer J, Mermoud A et al (2006) Dosage et cinetique de liberation de mitomycine C d’un implant de collagene utilise comme moyen d’administration lors d’une chirurgie filtrante chez le lapin. J Fr Ophtalmol 29(9):1042–1046, Epub 2006/11/23. Dosage and kinetics of MMC release of a collagen implant used as a delivery device in glaucoma surgery in the rabbit eye

    Article  CAS  PubMed  Google Scholar 

  59. Lai J-Y, Hsieh A-C (2012) A gelatin-g-poly(N-isopropylacrylamide) biodegradable in situ gelling delivery system for the intracameral administration of pilocarpine. Biomaterials 33(7):2372–2387

    Article  CAS  PubMed  Google Scholar 

  60. Bonferoni MC, Chetoni P, Giunchedi P, Rossi S, Ferrari F, Burgalassi S et al (2004) Carrageenan-gelatin mucoadhesive systems for ion-exchange based ophthalmic delivery: in vitro and preliminary in vivo studies. Eur J Pharm Biopharm 57(3):465–472, Epub 2004/04/20

    Article  CAS  PubMed  Google Scholar 

  61. Chhonker YS, Prasad YD, Chandasana H, Vishvkarma A, Mitra K, Shukla PK et al (2014) Amphotericin-B entrapped lecithin/chitosan nanoparticles for prolonged ocular application. Int J Biol Macromol 72C:1451–1458, Epub 2014/12/03

    Google Scholar 

  62. Wang F, Chen L, Zhang D, Jiang S, Shi K, Huang Y et al (2014) Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target 22(9):849–858, Epub 2014/07/22

    Article  CAS  PubMed  Google Scholar 

  63. Yasukawa T, Kimura H, Kunou N, Miyamoto H, Honda Y, Ogura Y, Ikada Y (2000) Biodegradable scleral implant for intravitreal controlled release of ganciclovir. Graefes Arch Clin Exp Ophthalmol 238(2):186–190

    Article  CAS  PubMed  Google Scholar 

  64. Fernandes-Cunha GM, Gouvea DR, Fulgencio GD, Rezende CM, da Silva GR, Bretas JM et al (2014) Development of a method to quantify clindamycin in vitreous humor of rabbits’ eyes by UPLC-MS/MS: application to a comparative pharmacokinetic study and in vivo ocular biocompatibility evaluation. J Pharm Biomed Anal 102:346–352, Epub 2014/12/03

    Article  PubMed  Google Scholar 

  65. Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P (2004) PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm 57(2):207–212, Epub 2004/03/17

    Article  CAS  PubMed  Google Scholar 

  66. Meng Y, Sun S, Li J, Nan K, Lan B, Jin Y et al (2014) Sustained release of triamcinolone acetonide from an episcleral plaque of multilayered poly-ε-caprolactone matrix. Acta Biomater 10(1):126–133

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeba Varghese Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, S.V. (2016). Physicochemical Requirements for Polymers and Polymer-Based Nanomaterial for Ophthalmic Drug Delivery. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_7

Download citation

Publish with us

Policies and ethics