Skip to main content

Pharmacokinetics and Pharmacodynamics of Ocular Drugs

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

This chapter aims to provide the readers a systematic overview of the pharmacokinetics and pharmacodynamics of the drugs intended for ophthalmic use. The concepts of ocular pharmacokinetics and pharmacodynamics are briefly discussed in the introduction. The chapter begins with a discussion on the common anatomical and physiological factors such as blood–ocular and tear fluid–corneal barriers, as well as anterior segment drug loss; and the challenges these factor pose in describing ocular pharmacokinetics and pharmacodynamics. The biopharmaceutics of the ocular drugs describes common pathways of ocular drug absorption. Further, commonly employed routes of administration for ocular drugs are discussed with respect to the choice of the route, properties of the drug, the nature of the ocular disease, the targeted ocular tissue, and the pharmacokinetic behavior of the drugs administered through the route. The pharmacokinetic–pharmacodynamic models that describe the fate of ocular drugs are further reviewed. Finally, recent advances and current trends in understanding of the pharmacokinetics/pharmacodynamics of ocular drugs are discussed based on the reported findings of the scientific and medical community.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilger BC, Gilger B (2013) Challenges in ocular pharmacokinetics, pharmacodynamics, and toxicology. In: Ocular pharmacology and toxicology. Humana Press, New York, pp 1–6

    Chapter  Google Scholar 

  2. Ammar HO et al (2010) Development of dorzolamide hydrochloride in situ gel nanoemulsion for ocular delivery. Drug Dev Ind Pharm 36(11):1330–1339

    Article  CAS  PubMed  Google Scholar 

  3. Lee VH-L, Robinson JR (1979) Mechanistic and quantitative evaluation of precorneal pilocarpine disposition in albino rabbits. J Pharm Sci 68(6):673–684

    Article  CAS  PubMed  Google Scholar 

  4. Patel PB et al (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1(2):113–120

    Article  CAS  Google Scholar 

  5. Urtti A, Salminen L (1993) Minimizing systemic absorption of topically administered ophthalmic drugs. Surv Ophthalmol 37(6):435–456

    Article  CAS  PubMed  Google Scholar 

  6. Lee VH, Robinson JR (1986) Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol 2(1):67–108

    Article  CAS  PubMed  Google Scholar 

  7. Urtti A et al (1994) Controlled ocular timolol delivery: systemic absorption and intraocular pressure effects in humans. Pharm Res 11(9):1278–1282

    Article  CAS  PubMed  Google Scholar 

  8. Urtti A, Salminen L, Miinalainen O (1985) Systemic absorption of ocular pilocarpine is modified by polymer matrices. Int J Pharm 23(2):147–161

    Article  CAS  Google Scholar 

  9. Urtti A et al (1990) Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int J Pharm 61(3):241–249

    Article  CAS  Google Scholar 

  10. Maurice DM, Mishima S (1984) Ocular pharmacokinetics. In: Sears M (ed) Pharmacology of the eye. Springer, Berlin/Heidelberg, pp 19–116

    Chapter  Google Scholar 

  11. Hornof M, Toropainen E, Urtti A (2005) Cell culture models of the ocular barriers. Eur J Pharm Biopharm 60(2):207–225

    Article  CAS  PubMed  Google Scholar 

  12. Huang HS, Schoenwald RD, Lach JL (1983) Corneal penetration behavior of beta-blocking agents II: assessment of barrier contributions. J Pharm Sci 72(11):1272–1279

    Article  CAS  PubMed  Google Scholar 

  13. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58(11):1131–1135

    Article  CAS  PubMed  Google Scholar 

  14. HÃmÃlÃinen KM et al (1997) Estimation of pore size and pore density of biomembranes from permeability measurements of polyethylene glycols using an effusion-like approach. J Control Release 49(2–3):97–104

    Article  Google Scholar 

  15. Prausnitz MR, Noonan JS (1998) Permeability of cornea, sclera, and conjunctiva: a literature analysis for drug delivery to the eye. J Pharm Sci 87(12):1479–1488

    Article  CAS  PubMed  Google Scholar 

  16. Geroski DH, Edelhauser HF (2001) Transscleral drug delivery for posterior segment disease. Adv Drug Deliv Rev 52(1):37–48

    Article  CAS  PubMed  Google Scholar 

  17. Cunha-Vaz J, Bernardes R, Lobo C (2011) Blood-retinal barrier. Eur J Ophthalmol 21(6):S3–S9

    Article  PubMed  Google Scholar 

  18. Xu HZ, Le YZ (2011) Significance of outer blood-retina barrier breakdown in diabetes and ischemia. Invest Ophthalmol Vis Sci 52(5):2160–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Murata T et al (1996) The relation between expression of vascular endothelial growth factor and breakdown of the blood-retinal barrier in diabetic rat retinas. Lab Invest 74(4):819–825

    CAS  PubMed  Google Scholar 

  20. Cunha-Vaz J, Faria de Abreu JR, Campos AJ (1975) Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol 59(11):649–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu D (2004) Pharmacokinetics in ocular drug development. In: Bonate PL, Howard DR (eds) Pharmacokinetics in drug development. AAPS Press, Arlington, pp 381–398

    Google Scholar 

  22. Gaudana R et al (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    Article  CAS  PubMed  Google Scholar 

  23. Kaur IP, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28(5):473–493

    Article  CAS  PubMed  Google Scholar 

  24. Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3:193–221

    Article  CAS  Google Scholar 

  25. Liaw J, Robinson JR (1993) Ocular penetration enhancers. In: Mitra AK (ed) Ophthalmic drug delivery systems. Marcel Dekker, New York, pp 369–381

    Google Scholar 

  26. Rawas-Qalaji M, Williams CA (2012) Advances in ocular drug delivery. Curr Eye Res 37(5):345–356

    Article  CAS  PubMed  Google Scholar 

  27. Sieg JW, Robinson JR (1976) Mechanistic studies on transcorneal permeation of pilocarpine. J Pharm Sci 65(12):1816–1822

    Article  CAS  PubMed  Google Scholar 

  28. Gomes dos Santos AL et al (2006) Sustained release of nanosized complexes of polyethylenimine and anti-TGF-β2 oligonucleotide improves the outcome of glaucoma surgery. J Control Release 112(3):369–381

    Article  CAS  PubMed  Google Scholar 

  29. Bashshur ZF et al (2006) Intravitreal bevacizumab for the management of choroidal neovascularization in age-related macular degeneration. Am J Ophthalmol 142(1):1–9

    Article  CAS  PubMed  Google Scholar 

  30. Zhou B, Wang B (2006) Pegaptanib for the treatment of age-related macular degeneration. Exp Eye Res 83(3):615–619

    Article  CAS  PubMed  Google Scholar 

  31. Pitkanen L et al (2005) Permeability of retinal pigment epithelium: effects of permanent molecular weight and lipophilicity. Invest Ophthalmol Vis Sci 46(2):641–646

    Article  PubMed  Google Scholar 

  32. Ambati J et al (2000) Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 41(5):1186–1191

    CAS  PubMed  Google Scholar 

  33. Behrens-Baumann W, Ansorg R (1983) Azlocillin concentrations in human aqueous humor after intravenous and subconjunctival administration. Graefes Arch Clin Exp Ophthalmol 220(6):292–293

    Article  CAS  PubMed  Google Scholar 

  34. Behrens-Baumann W, Ansorg R (1985) Mezlocillin concentrations in human aqueous humour after intravenous and subconjunctival administration. Chemotherapy 31(3):169–172

    Article  CAS  PubMed  Google Scholar 

  35. Behrens-Baumann W, Martell J (1987) Ciprofloxacin concentrations in human aqueous humor following intravenous administration. Chemotherapy 33(5):328–330

    Article  CAS  PubMed  Google Scholar 

  36. Behrens-Baumann W, Martell J (1988) Ciprofloxacin concentration in the rabbit aqueous humor and vitreous following intravenous and subconjunctival administration. Infection 16(1):54–57

    Article  CAS  PubMed  Google Scholar 

  37. Behrens-Baumann W et al (1986) Ciclosporin concentration in the rabbit aqueous humor and cornea following subconjunctival administration. Graefes Arch Clin Exp Ophthalmol 224(4):368–370

    Article  CAS  PubMed  Google Scholar 

  38. Peeters L et al (2005) Vitreous: a barrier to nonviral ocular gene therapy. Invest Ophthalmol Vis Sci 46(10):3553–3561

    Article  PubMed  Google Scholar 

  39. Pitkanen L et al (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20(4):576–583

    Article  PubMed  Google Scholar 

  40. Park J et al (2005) Evaluation of coupled convective-diffusive transport of drugs administered by intravitreal injection and controlled release implant. J Control Release 105(3):279–295

    Article  CAS  PubMed  Google Scholar 

  41. Haller JA et al (2014) Efficacy of intravitreal ocriplasmin for treatment of vitreomacular adhesion: subgroup analyses from two randomized trials. Ophthalmology 6420(14):00689-7

    Google Scholar 

  42. Inoue M et al (2014) Intravitreal injection of ranibizumab using a pro re nata regimen for age-related macular degeneration and vision-related quality of life. Clin Ophthalmol 8:1711–1716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ausayakhun S et al (2005) Treatment of cytomegalovirus retinitis in AIDS patients with intravitreal ganciclovir. J Med Assoc Thai 88(9):S15–S20

    PubMed  Google Scholar 

  44. Ornek N, Ornek K, Erbahceci IE (2014) Corneal and conjunctival sensitivity changes following intravitreal ranibizumab injection in diabetic retinopathy. J Ocul Pharmacol Ther 2014:22

    Google Scholar 

  45. Aslan Bayhan S et al (2014) Marginal keratitis after intravitreal injection of ranibizumab. Cornea 2014:12

    Google Scholar 

  46. Worakul N, Robinson JR (1997) Ocular pharmacokinetics/pharmacodynamics. Eur J Pharm Biopharm 44(1):71–83

    Article  CAS  Google Scholar 

  47. Ahmed I, Patton TF (1987) Disposition of timolol and inulin in the rabbit eye following corneal versus non-corneal absorption. Int J Pharm 38(1–3):9–21

    Article  CAS  Google Scholar 

  48. Chien DS et al (1990) Corneal and conjunctival/scleral penetration of p-aminoclonidine, AGN 190342, and clonidine in rabbit eyes. Curr Eye Res 9(11):1051–1059

    Article  CAS  PubMed  Google Scholar 

  49. Eller MG et al (1985) Topical carbonic anhydrase inhibitors IV: relationship between excised corneal permeability and pharmacokinetic factors. J Pharm Sci 74(5):525–529

    Article  CAS  PubMed  Google Scholar 

  50. Himmelstein KJ, Guvenir I, Patton TF (1978) Preliminary pharmacokinetic model of pilocarpine uptake and distribution in the eye. J Pharm Sci 67(5):603–606

    Article  CAS  PubMed  Google Scholar 

  51. Jones RF, Maurice DM (1966) New methods of measuring the rate of aqueous flow in man with fluorescein. Exp Eye Res 5(3):208–220

    Article  CAS  PubMed  Google Scholar 

  52. Makoid MC, Robinson JR (1979) Pharmacokinetics of topically applied pilocarpine in the albino rabbit eye. J Pharm Sci 68(4):435–443

    Article  CAS  PubMed  Google Scholar 

  53. Makoid MC, Sieg JW, Robinson JR (1976) Corneal drug absorption: an illustration of parallel first-order absorption and rapid loss of drug from absorption depot. J Pharm Sci 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  54. Miller SC, Himmelstein KJ, Patton TF (1981) A physiologically based pharmacokinetic model for the intraocular distribution of pilocarpine in rabbits. J Pharmacokinet Biopharm 9(6):653–677

    Article  CAS  PubMed  Google Scholar 

  55. Rao CS et al (1992) Biopharmaceutical evaluation of ibufenac, ibuprofen, and their hydroxyethoxy analogs in the rabbit eye. J Pharmacokinet Biopharm 20(4):357–388

    Article  CAS  PubMed  Google Scholar 

  56. Sieg JW, Robinson JR (1981) Mechanistic studies on transcorneal permeation of fluorometholone. J Pharm Sci 70(9):1026–1029

    Article  CAS  PubMed  Google Scholar 

  57. Sakanaka K et al (2008) Ocular pharmacokinetic/pharmacodynamic modeling for timolol in rabbits using a telemetry system. Biol Pharm Bull 31(5):970–975

    Article  CAS  PubMed  Google Scholar 

  58. Sakanaka K et al (2004) Ocular pharmacokinetic/pharmacodynamic modeling for bunazosin after instillation into rabbits. Pharm Res 21(5):770–776

    Article  CAS  PubMed  Google Scholar 

  59. Sakanaka K et al (2008) Ocular pharmacokinetic/pharmacodynamic modeling for multiple anti-glaucoma drugs. Biol Pharm Bull 31(8):1590–1595

    Article  CAS  PubMed  Google Scholar 

  60. Zimmer A et al (1994) Pharmacokinetic and pharmacodynamic aspects of an ophthalmic pilocarpine nanoparticle-delivery-system. Pharm Res 11(10):1435–1442

    Article  CAS  PubMed  Google Scholar 

  61. Tang-Liu D et al (1996) Pharmacokinetic and pharmacodynamic correlation of ophthalmic drugs. In: Reddy IK (ed) Ocular therapeutics and drug delivery: a multi-disciplinary approach. Technomic Publishing Co., Inc., Lancaster

    Google Scholar 

  62. Durairaj C, Shen J, Cherukury M (2014) Mechanism – based translational pharmacokinetic – pharmacodynamic model to predict intraocular pressure lowering effect of drugs in patients with glaucoma or ocular hypertension. Pharm Res 31(8):2095–2106

    Article  CAS  PubMed  Google Scholar 

  63. Luu KT et al (2009) Pharmacokinetic-pharmacodynamic and response sensitization modeling of the intraocular pressure-lowering effect of the EP4 Agonist 5-{3-[(2S)-2-{(3R)-3-hydroxy-4-[3-(trifluoromethyl)phenyl]butyl}-5-oxopyrrolidin- 1-yl]propyl}thiophene-2-carboxylate (PF-04475270). J Pharmacol Exp Ther 331(2):627–635

    Article  CAS  PubMed  Google Scholar 

  64. Siepmann J et al (1999) HPMC-matrices for controlled drug delivery: a new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm Res 16(11):1748–1756

    Article  CAS  PubMed  Google Scholar 

  65. Zhang Y et al (2014) Pharmacokinetics of ranibizumab after intravitreal administration in patients with retinal vein occlusion or diabetic macular edema. Ophthalmology 6420(14):00432-1

    Google Scholar 

  66. Tang-Liu DD, Acheampong A (2005) Ocular pharmacokinetics and safety of ciclosporin, a novel topical treatment for dry eye. Clin Pharmacokinet 44(3):247–261

    Article  CAS  PubMed  Google Scholar 

  67. Bucolo C, Melilli B, Piazza C, Zurria M, Drago F. (2011). Ocular Pharmacokinetics Profile of Different Indomethacin Topical Formulations. J Ocul Pharmacol Ther, 2011/12/01, 27(6):571–576

    Google Scholar 

  68. Yuan J et al (2009) Preparation of 0.05 % FK506 suspension eyedrops and its pharmacokinetics after topical ocular administration. J Ocul Pharmacol Ther 25(4):345–50

    Article  CAS  PubMed  Google Scholar 

  69. Yuan J et al (2012) Ocular safety and pharmacokinetics study of FK506 suspension eye drops after corneal transplantation. J Ocul Pharmacol Ther 28(2):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Asena L et al (2013) Ocular pharmacokinetics, safety and efficacy of intracameral moxifloxacin 0.5 % solution in a rabbit model. Curr Eye Res 38(4):472–479

    Article  CAS  PubMed  Google Scholar 

  71. Lin J et al (2014) Ocular pharmacokinetics of naringenin eye drops following topical administration to rabbits. J Ocul Pharmacol Ther 2014:17

    Google Scholar 

  72. Shen J et al (2014) Ocular pharmacokinetics of intravitreally administered brimonidine and dexamethasone in animal models with and without blood-retinal barrier breakdown. Invest Ophthalmol Vis Sci 55(2):1056–1066

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vivek S. Dave or Suraj G. Bhansali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dave, V.S., Bhansali, S.G. (2016). Pharmacokinetics and Pharmacodynamics of Ocular Drugs. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_6

Download citation

Publish with us

Policies and ethics