Skip to main content

Nanotechnology and Nanomaterials in Ophthalmic Drug Delivery

  • Chapter
  • First Online:

Abstract

The anatomical barriers and physiological clearance mechanisms on the ocular surface have presented enormous challenges for development of ocular drug delivery devices. More invasive methods, such as intravitreal injections, can improve the ocular bioavailability of therapeutic agents but often result in vision-threatening side effects. Recently, an increasing number of scientists have turned to nanomaterial-based drug delivery systems to address the challenges faced by conventional methods. This chapter highlights the recent applications of various nanomaterials, such as polymeric micelles, hydrogels, liposomes, niosomes, dendrimers, and cyclodextrins as ophthalmic drug delivery systems to enhance the ocular bioavailability of therapeutic agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bejjani RA, Behar-Cohen F, Benezra D, Gurny R, Delie F (2005) Polymeric nanoparticles for drug delivery to the posterior segment of the eye. Chimia 59(6):344–347

    Article  Google Scholar 

  2. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK (2009) Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 136(1):2–13

    Article  CAS  PubMed  Google Scholar 

  3. Tong Y, Chang S, Liu C, Kao WW, Huang CH, Liaw J (2007) Eye drop delivery of nano-polymeric micelle formulated genes with cornea-specific promoters. J Gene Med 9(11):956–966

    Article  CAS  PubMed  Google Scholar 

  4. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15(23):2724–2750

    Article  CAS  PubMed  Google Scholar 

  5. Zarbin MA, Montemagno C, Leary JF, Ritch R (2010) Nanomedicine in ophthalmology: the new frontier. Am J Ophthalmol 150(2):144–162

    Article  CAS  PubMed  Google Scholar 

  6. Liu S, Jones L, Gu FX (2012) Nanomaterials for ocular drug delivery. Macromol Biosci 12(5):608–620

    Article  CAS  PubMed  Google Scholar 

  7. Gaudana R, Jwala J, Boddu SHS, Mitra AK (2009) Recent perspectives in ocular drug delivery. Pharm Res 26(5):1197–1216

    Article  CAS  PubMed  Google Scholar 

  8. Hughes PM, Olejnik O, Chang-Lin JE, Wilson CG (2005) Topical and systemic drug delivery to the posterior segments. Adv Drug Deliv Rev 57(14):2010–2032

    Article  CAS  PubMed  Google Scholar 

  9. Peng CC, Bengani LC, Jung HJ, Leclerc J, Gupta C, Chauhan A (2011) Emulsions and microemulsions for ocular drug delivery. J Drug Delivery Sci Technol 21(1):111–121

    Article  CAS  Google Scholar 

  10. del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today 13(3–4):135–143

    PubMed  Google Scholar 

  11. Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y (2004) Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 23(3):253–281

    Article  CAS  PubMed  Google Scholar 

  12. Harder BC, Baltz S, Jonas JB, Schlichtenbrede FC (2011) Intravitreal bevacizumab for retinopathy of prematurity. J Ocul Pharmacol Ther 27(6):623–627

    Google Scholar 

  13. Kolomeyer AM, Roy MS, Chu DS (2011) The use of intravitreal ranibizumab for choroidal neovascularization associated with vogt-koyanagi-harada syndrome. Case Rep Med 2011:747648

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ranta V, Mannermaa E, Lummepuro K, Subrizi A, Laukkanen A, Antopolsky M, Murtomaki L, Hornof M, Urtti A (2010) Barrier analysis of periocular drug delivery to the posterior segment. J Control Release 148(1):42–48

    Article  CAS  PubMed  Google Scholar 

  15. Ciolino JB, Dohlman CH, Kohane DS (2009) Contact lenses for drug delivery. Semin Ophthalmol 24(3):156–160

    Article  PubMed  Google Scholar 

  16. Lavik E, Kuehn MH, Kwon YH (2011) Novel drug delivery systems for glaucoma. Eye 25(5):578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weiner AL, Gilger BC (2010) Advancements in ocular drug delivery. Vet Ophthalmol 13(6):395–406

    Article  CAS  PubMed  Google Scholar 

  18. Phan C-M, Subbaraman L, Jones L (2014) Contact lenses for antifungal ocular drug delivery: a review. Expert Opin Drug Deliv 11(4):537–546

    Article  CAS  PubMed  Google Scholar 

  19. Fonn D (2007) Targeting contact lens induced dryness and discomfort: what properties will make lenses more comfortable. Optom Vis Sci 84(4):279–285

    Article  PubMed  Google Scholar 

  20. Gulsen D, Chauhan A (2005) Dispersion of microemulsion drops in HEMA hydrogel: a potential ophthalmic drug delivery vehicle. Int J Pharm 292(1–2):95–117

    Article  CAS  PubMed  Google Scholar 

  21. Li CC, Chauhan A (2006) Modeling ophthalmic drug delivery by soaked contact lenses. Ind Eng Chem Res 45(10):3718–3734

    Article  CAS  Google Scholar 

  22. Ciolino JB, Hoare TR, Iwata NG, Behlau I, Dohlman CH, Langer R, Kohane DS (2009) A drug-eluting contact lens. Invest Ophthalmol Vis Sci 50(7):3346–3352

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gulsen D, Li CC, Chauhan A (2005) Dispersion of DMPC liposomes in contact lenses for ophthalmic drug delivery. Curr Eye Res 30(12):1071–1080

    Article  CAS  PubMed  Google Scholar 

  24. Jimenez N, Galan J, Vallet A, Egea MA, Garcia ML (2010) Methyl trypsin loaded poly(d,l-lactide-coglycolide) nanoparticles for contact lens care. J Pharm Sci 99(3):1414–1426

    Article  CAS  PubMed  Google Scholar 

  25. Kapoor Y, Chauhan A (2008) Drug and surfactant transport in Cyclosporine A and Brij 98 laden p-HEMA hydrogels. J Colloid Interface Sci 322(2):624–633

    Article  CAS  PubMed  Google Scholar 

  26. Phan C-M, Subbaraman L, Liu S, Gu F, Jones L (2014) In vitro uptake and release of natamycin Dex-b-PLA nanoparticles from model contact lens materials. J Biomater Sci Polym Ed 25(1):18–31

    Article  CAS  PubMed  Google Scholar 

  27. Sahoo SK, Diinawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13(3–4):144–151

    Article  CAS  PubMed  Google Scholar 

  28. Zimmer A, Kreuter J (1995) Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 16(1):61–73

    Article  CAS  Google Scholar 

  29. Hamidi M, Azadi A, Rafiei P (2008) Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 60(15):1638–1649

    Article  CAS  PubMed  Google Scholar 

  30. Ludwig A (2005) The use of mucoadhesive polymers in ocular drug delivery. Adv Drug Deliv Rev 57(11):1595–1639

    Article  CAS  PubMed  Google Scholar 

  31. Cardillo JA, Souza-Filho AA, Oliveira AG (2006) Intravitreal bioerudivel sustained-release triamcinolone microspheres system (RETAAC). Preliminary report of its potential usefulnes for the treatment of diabetic macular edema. Arch Soc Esp Oftalmol 81(12):675

    Article  CAS  PubMed  Google Scholar 

  32. Rafie F, Javadzadeh Y, Javadzadeh AR, Ghavidel LA, Jafari B, Moogooee M, Davaran S (2010) In vivo evaluation of novel nanoparticles containing dexamethasone for ocular drug delivery on rabbit eye. Curr Eye Res 35(12):1081–1089

    Article  CAS  PubMed  Google Scholar 

  33. Pepic I, Hafner A, Lovric J, Pirkic B, Filipovic-Grcic J (2010) A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J Pharm Sci 99(10):4317–4325

    Article  CAS  PubMed  Google Scholar 

  34. Di Tommaso C, Torriglia A, Furrer P, Behar-Cohen F, Gurny R, Moller M (2011) Ocular biocompatibility of novel cyclosporin a formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416(2):515–524

    Article  PubMed  CAS  Google Scholar 

  35. Civiale C, Licciardi M, Cavallaro G, Giammona G, Mazzone MG (2009) Polyhydroxyethylaspartamide-based micelles for ocular drug delivery. Int J Pharm 378(1–2):177–186

    Article  CAS  PubMed  Google Scholar 

  36. Volotinen M, Maenpaa J, Kautiainen H, Tolonen A, Uusitalo J, Ropo A, Vapaatalo H, Aine E (2009) Ophthalmic timolol in a hydrogel vehicle leads to minor inter-individual variation in timolol concentration in aqueous humor. Eur J Pharm Sci 36(2–3):292–296

    Article  CAS  PubMed  Google Scholar 

  37. Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M (2003) Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther 19(2):145–151

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Mira E, Egea MA, Garcia ML, Souto EB (2010) Design and ocular tolerance of flurbiprofen loaded ultrasound-engineered NLC. Colloids Surf B Biointerfaces 81(2):412–421

    Article  CAS  PubMed  Google Scholar 

  39. Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16(1):44–56

    Article  CAS  PubMed  Google Scholar 

  40. Habib FS, Fouad EA, Abdel-Rhaman MS, Fathalla D (2010) Liposomes as an ocular delivery system of fluconazole: in-vitro studies. Acta Ophthalmol 88(8):901–904

    Article  CAS  PubMed  Google Scholar 

  41. Mehanna MM, Elmaradny HA, Samaha MW (2010) Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 36(1):108–118

    Article  CAS  PubMed  Google Scholar 

  42. Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B (2011) Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (Avastin) for intravitreal administration (29:699, 2009). Retina J Retin Vitreous Dis 31(1):205

    Google Scholar 

  43. Kuno N, Fujii S (2011) Recent advances in ocular drug delivery systems. Polymers 3(1):193–221

    Article  CAS  Google Scholar 

  44. Vandamme TF, Brobeck L (2005) Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102(1):23–38

    Article  CAS  PubMed  Google Scholar 

  45. Spataro G, Malecaze F, Turrin C, Soler V, Duhayon C, Elena P, Majoral J, Caminade A (2010) Designing dendrimers for ocular drug delivery. Eur J Med Chem 45(1):326–334

    Article  CAS  PubMed  Google Scholar 

  46. Gudmundsdottir E, Stefansson E, Bjarnadottir G, Sigurjonsdottir JF, Gudmundsdottir G, Masson M, Loftsson T (2000) Methazolamide 1 % in cyclodextrin solution lowers IOP in human ocular hypertension. Invest Ophthalmol Vis Sci 41(11):3552–3554

    CAS  PubMed  Google Scholar 

  47. Gonzalez JR, Baiza-Duran L, Quintana-Hau J, Tornero-Montano R, Castaneda-Hernandez G, Ortiz M, Alarcon-Oceguera F, Beltran-Loustaunau M, Cortez-Gastelum M, Garciduenas-Mejia J, Gomez-Bastar P, Jimenez-Roman J, Korder-Ortega V, Paczka-Zapata J, Torres-Segura M, Velasco-Gallegos G (2007) Comparison of the stability, efficacy, and adverse effect profile of the innovator 0.005 % latanoprost ophthalmic solution and a novel cyclodextrin-containing formulation. J Clin Pharmacol 47(1):121–126

    Article  CAS  PubMed  Google Scholar 

  48. Eljarrat-Binstock E, Domb AJ (2006) Iontophoresis: a non-invasive ocular drug delivery. J Control Release 110(3):479–489

    Article  CAS  PubMed  Google Scholar 

  49. Eljarrat-Binstock E, Orucov F, Aldouby Y, Frucht-Pery J, Domb AJ (2008) Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release 126(2):156–161

    Article  CAS  PubMed  Google Scholar 

  50. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ (2008) Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharmacol Ther 24(3):344–350

    Article  CAS  PubMed  Google Scholar 

  51. Gaucher G, Marchessault RH, Leroux J (2010) Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J Control Release 143(1):2–12

    Article  CAS  PubMed  Google Scholar 

  52. Molokhia SA, Jeong E, Higuchi WI, Li SK (2009) Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI. Exp Eye Res 88(3):418–425

    Article  CAS  PubMed  Google Scholar 

  53. Cho HK, Cheong IW, Lee JM, Kim JH (2010) Polymeric nanoparticles, micelles and polymersomes from amphiphilic block copolymer. Korean J Chem Eng 27(3):731–740

    Article  CAS  Google Scholar 

  54. Gaucher G, Dufresne MH, Sant VP, Kang N, Maysinger D, Leroux JC (2005) Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release 109(1–3):169–188

    Article  CAS  PubMed  Google Scholar 

  55. Jagur-Grodzinski J (2009) Polymers for targeted and/or sustained drug delivery. Polym Adv Technol 20(7):595–606

    Article  CAS  Google Scholar 

  56. Kim DK, Dobson J (2009) Nanomedicine for targeted drug delivery. J Mater Chem 19(35):6294–6307

    Article  CAS  Google Scholar 

  57. Onaca O, Enea R, Hughes DW, Meier W (2009) Stimuli-responsive polymersomes as nanocarriers for drug and gene delivery. Macromol Biosci 9(2):129–139

    Article  CAS  PubMed  Google Scholar 

  58. Pepic I, Lovric J, Filipovic-Grcic J (2012) Polymeric micelles in ocular drug delivery: rationale, strategies and challenges. Chem Biochem Eng Q 26(4):365–377

    CAS  Google Scholar 

  59. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70(1–2):1–20

    Article  CAS  PubMed  Google Scholar 

  60. Ayalasomayajula SP, Kompella UB (2005) Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 511(2–3):191–198

    Article  CAS  PubMed  Google Scholar 

  61. Barcia E, Herrero-Vanrell R, Diez A, Alvarez-Santiago C, Lopez I, Calonge M (2009) Downregulation of endotoxin-induced uveitis by intravitreal injection of polylactic-glycolic acid (PLGA) microspheres loaded with dexamethasone. Exp Eye Res 89(2):238–245

    Article  CAS  PubMed  Google Scholar 

  62. Cleland JL, Duenas ET, Park A, Daugherty A, Kahn J, Kowalski J, Cuthbertson A (2001) Development of poly-(d,l-lactide-coglycolide) microsphere formulations containing recombinant human vascular endothelial growth factor to promote local angiogenesis. J Control Release 72(1–3):13–24

    Article  CAS  PubMed  Google Scholar 

  63. Gavini E, Chetoni P, Cossu M, Alvarez MG, Saettone MF, Giunchedi P (2004) PLGA microspheres for the ocular delivery of a peptide drug, vancomycin using emulsification/spray-drying as the preparation method: in vitro/in vivo studies. Eur J Pharm Biopharm 57(2):207–212

    Article  CAS  PubMed  Google Scholar 

  64. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomed Nanotechnol Biol Med 6(2):324–333

    Article  CAS  Google Scholar 

  65. Qaddoumi MG, Ueda H, Yang J, Davda J, Labhasetwar V, Lee VHL (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21(4):641–648

    Article  CAS  PubMed  Google Scholar 

  66. De Campos AM, Sanchez A, Gref R, Calvo P, Alonso MJ (2003) The effect of a PEG versus a chitosan coating on the interaction of drug colloidal carriers with the ocular mucosa. Eur J Pharm Sci 20(1):73–81

    Article  PubMed  CAS  Google Scholar 

  67. Xu L, Xu X, Chen H, Li X (2013) Ocular biocompatibility and tolerance study of biodegradable polymeric micelles in the rabbit eye. Colloids Surf B Biointerfaces 112:30–34

    Article  CAS  PubMed  Google Scholar 

  68. Di Tommaso C, Bourges J, Valamanesh F, Trubitsyn G, Torriglia A, Jeanny J, Behar-Cohen F, Gurny R, Moeller M (2012) Novel micelle carriers for cyclosporin a topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. Eur J Pharm Biopharm 81(2):257–264

    Article  PubMed  CAS  Google Scholar 

  69. Pepic I, Jalsenjak N, Jalsenjak I (2004) Micellar solutions of triblock copolymer surfactants with pilocarpine. Int J Pharm 272(1–2):57–64

    Article  CAS  PubMed  Google Scholar 

  70. Liaw J, Chang SF, Hsiao FC (2001) In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles. Gene Ther 8(13):999–1004

    Article  CAS  PubMed  Google Scholar 

  71. Kadam Y, Yerramilli U, Bahadur A (2009) Solubilization of poorly water-soluble drug carbamazepine in Pluronic (R) micelles: effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf B Biointerfaces 72(1):141–147

    Article  CAS  PubMed  Google Scholar 

  72. Gupta AK, Madan S, Majumdar DK, Maitra A (2000) Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies. Int J Pharm 209(1–2):1–14

    Article  CAS  PubMed  Google Scholar 

  73. Roy S, Zhang K, Roth T, Vinogradov S, Kao RS, Kabanov A (1999) Reduction of fibronectin expression by intravitreal administration of antisense oligonucleotides. Nat Biotechnol 17(5):476–479

    Article  CAS  PubMed  Google Scholar 

  74. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44(8):3562–3569

    Article  PubMed  Google Scholar 

  75. Qu X, Khutoryanskiy VV, Stewart A, Rahman S, Papahadjopoulos-Sternberg B, Dufes C, McCarthy D, Wilson CG, Lyons R, Carter KC, Schatzlein A, Uchegbu IF (2006) Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7(12):3452–3459

    Article  CAS  PubMed  Google Scholar 

  76. du Toit LC, Pillay V, Choonara YE, Govender T, Carmichael T (2011) Ocular drug delivery – a look towards nanobioadhesives. Expert Opin Drug Deliv 8(1):71–94

    Article  PubMed  CAS  Google Scholar 

  77. Khutoryanskiy VV (2011) Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci 11(6):748–764

    Article  CAS  PubMed  Google Scholar 

  78. Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF (2011) Mucoadhesive drug delivery systems. J Pharm Bioallied Sci 3(1):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sogias IA, Williams AC, Khutoryanskiy VV (2008) Why is chitosan mucoadhesive? Biomacromolecules 9(7):1837–1842

    Article  CAS  PubMed  Google Scholar 

  80. Lin H, Chang P (2013) Novel pluronic-chitosan micelle as an ocular delivery system. J Biomed Mater Res B Appl Biomater 101B(5):689–699

    Article  CAS  Google Scholar 

  81. Shen J, Wang Y, Ping Q, Xiao Y, Huang X (2009) Mucoadhesive effect of thiolated PEG stearate and its modified NLC for ocular drug delivery. J Control Release 137(3–4):217–223

    Article  CAS  PubMed  Google Scholar 

  82. Otsuka H, Uchimura E, Koshino H, Okano T, Kataoka K (2003) Anomalous binding profile of phenylboronic acid with N-acetylneuraminic acid (Neu5Ac) in aqueous solution with varying pH. J Am Chem Soc 125(12):3493–3502

    Article  CAS  PubMed  Google Scholar 

  83. Liu S, Jones L, Gu FX (2012) Development of mucoadhesive drug delivery system using phenylboronic acid functionalized poly(d,l-lactide)-b-Dextran nanoparticles. Macromol Biosci 12(12):1622–1626

    Article  CAS  PubMed  Google Scholar 

  84. Saarinen-Savolainen P, Jarvinen T, Suhonen P, Urtti A (1996) Amphiphilic properties of pilocarpine prodrugs. Int J Pharm 133(1–2):171–178

    Article  CAS  Google Scholar 

  85. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M (1999) Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst 16(1):85–146

    Article  CAS  PubMed  Google Scholar 

  86. Kawakami S, Nishida K, Mukai T, Yamamura K, Kobayashi K, Sakaeda T, Nakamura J, Nakashima M, Sasaki H (2001) Ocular absorption behavior of palmitoyl tilisolol, an amphiphilic prodrug of tilisolol, for ocular drug delivery. J Pharm Sci 90(12):2113–2120

    Article  CAS  PubMed  Google Scholar 

  87. Tu J, Pang H, Yan Z, Li P (2007) Ocular permeability of pirenzepine hydrochloride enhanced by methoxy poly(ethylene glycol)-poly(d,l-lactide) block copolymer. Drug Dev Ind Pharm 33(10):1142–1150

    Article  CAS  PubMed  Google Scholar 

  88. Gupta P, Vermani K, Garg S (2002) Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov Today 7(10):569–579

    Article  CAS  PubMed  Google Scholar 

  89. Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49(8):1993–2007

    Article  CAS  Google Scholar 

  90. Barbu E, Verestiuc L, Iancu M, Jatariu A, Lungu A, Tsibouklis J (2009) Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate. Nanotechnology 20(22):225108

    Article  PubMed  CAS  Google Scholar 

  91. Peniche H, Peniche C (2011) Chitosan nanoparticles: a contribution to nanomedicine. Polym Int 60(6):883–889

    Article  CAS  Google Scholar 

  92. El-Kamel AH (2002) In vitro and in vivo evaluation of Pluronic F127-based ocular delivery system for timolol maleate. Int J Pharm 241(1):47–55

    Article  CAS  PubMed  Google Scholar 

  93. Ma W, Xu H, Wang C, Nie S, Pan W (2008) Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system. Int J Pharm 350(1–2):247–256

    Article  CAS  PubMed  Google Scholar 

  94. Lu C, Mikhail AS, Wang X, Brook MA, Allen C (2012) Hydrogels containing core cross-linked block co-polymer micelles. J Biomater Sci Polym Ed 23(8):1069–1090

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Zhang Z, Chen H (2013) Development and evaluation of fast forming nano-composite hydrogel for ocular delivery of diclofenac. Int J Pharm 448(1):96–100

    Article  CAS  PubMed  Google Scholar 

  96. Law SL, Huang KJ, Chiang CH (2000) Acyclovir-containing liposomes for potential ocular delivery. Corneal penetration and absorption. J Control Release 63(1–2):135–140

    Article  CAS  PubMed  Google Scholar 

  97. Diebold Y, Jarrin M, Saez V, Carvalho ELS, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28(8):1553–1564

    Article  CAS  PubMed  Google Scholar 

  98. Li N, Zhuang C, Wang M, Sun X, Nie S, Pan W (2009) Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 379(1):131–138

    Article  CAS  PubMed  Google Scholar 

  99. Wang S, Zhang J, Jiang T, Zheng L, Wang Z, Zhang J, Yu P (2011) Protective effect of Coenzyme Q(10) against oxidative damage in human lens epithelial cells by novel ocular drug carriers. Int J Pharm 403(1–2):219–229

    Article  CAS  PubMed  Google Scholar 

  100. Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H (2013) Retinal drug delivery using eyedrop preparations of poly-l-lysine-modified liposomes. Eur J Pharm Biopharm 83(3):364–369

    Article  CAS  PubMed  Google Scholar 

  101. Hosny KM (2009) Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech 10(4):1336–1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, Couvreur P (2002) Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 43(1):253–259

    PubMed  Google Scholar 

  103. Hironaka K, Inokuchi Y, Tozuka Y, Shimazawa M, Hara H, Takeuchi H (2009) Design and evaluation of a liposomal delivery system targeting the posterior segment of the eye. J Control Release 136(3):247–253

    Article  CAS  PubMed  Google Scholar 

  104. Gross N, Ranjbar M, Evers C, Hua J, Martin G, Schulze B, Michaelis U, Hansen LL, Agostini HT (2013) Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol Vis 19:54–61

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Abdelbary G, El-gendy N (2008) Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 9(3):740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Abdelkader H, Alani AWG, Alany RG (2014) Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv 21(2):87–100

    Article  CAS  PubMed  Google Scholar 

  107. Mahale NB, Thakkar PD, Mali RG, Walunj DR, Chaudhari SR (2012) Niosomes: novel sustained release nonionic stable vesicular systems – an overview. Adv Colloid Interface Sci 183:46–54

    Article  PubMed  CAS  Google Scholar 

  108. Vyas SP, Mysore N, Jaitely V, Venkatesan N (1998) Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 53(7):466–469

    CAS  PubMed  Google Scholar 

  109. Prabu P, Chaudhari AA, Aryal S, Dharmaraj N, Park SY, Kim WD, Kim HY (2008) In vitro evaluation of poly(caprolactone) grafted dextran (PGD) nanoparticles with cancer cell. J Mater Sci Mater Med 19(5):2157–2163

    Article  CAS  PubMed  Google Scholar 

  110. Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248(10):1467–1472

    Article  CAS  PubMed  Google Scholar 

  111. Li Q, Li Z, Zeng W, Ge S, Lu H, Wu C, Ge L, Liang D, Xu Y (2014) Proniosome-derived niosomes for tacrolimus topical ocular delivery: In vitro cornea permeation, ocular irritation, and in vivo anti-allograft rejection. Eur J Pharm Sci 62:115–123

    Article  CAS  PubMed  Google Scholar 

  112. Cheng Y, Xu Z, Ma M, Xu T (2008) Dendrimers as drug carriers: applications in different routes of drug administration. J Pharm Sci 97(1):123–143

    Article  CAS  PubMed  Google Scholar 

  113. Mignani S, El Kazzouli S, Bousmina M, Majoral J (2013) Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 64(10):1316–1330

    Article  CAS  Google Scholar 

  114. Yao W, Sun K, Mu H, Liang N, Liu Y, Yao C, Liang R, Wang A (2010) Preparation and characterization of puerarin-dendrimer complexes as an ocular drug delivery system. Drug Dev Ind Pharm 36(9):1027–1035

    Article  CAS  PubMed  Google Scholar 

  115. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci 51(11):5804–5816

    Article  PubMed  Google Scholar 

  116. Yandrapu SK, Kanujia P, Chalasani KB, Mangamoori L, Kolapalli RV, Chauhan A (2013) Development and optimization of thiolated dendrimer as a viable mucoadhesive excipient for the controlled drug delivery: an acyclovir model formulation. Nanomed Nanotechnol Biol Med 9(4):514–522

    Article  CAS  Google Scholar 

  117. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H (2012) Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomed Nanotechnol Biol Med 8(5):776–783

    Article  CAS  Google Scholar 

  118. Yang H, Leffler CT (2013) Hybrid dendrimer hydrogel/poly(lactic-co-glycolic acid) nanoparticle platform: an advanced vehicle for topical delivery of antiglaucoma drugs and a likely solution to improving compliance and adherence in glaucoma management. J Ocul Pharmacol Ther 29(2):166–172

    Article  PubMed  CAS  Google Scholar 

  119. Loftssona T, Jarvinen T (1999) Cyclodextrins in ophthalmic drug delivery. Adv Drug Deliv Rev 36(1):59–79

    Article  CAS  PubMed  Google Scholar 

  120. Conway BR (2008) Recent patents on ocular drug delivery systems. Recent Pat Drug Deliv Formul 2(1):1–8

    Article  CAS  PubMed  Google Scholar 

  121. Kaur IP, Chhabra S, Aggarwal D (2004) Role of cyclodextrins in ophthalmics. Curr Drug Deliv 1(4):351–360

    Article  CAS  PubMed  Google Scholar 

  122. Malaekeh-Nikouei B, Bazzaz BSF, Soheili V, Mohammadian K (2013) Problems in ophthalmic drug delivery: evaluation of the interaction between preservatives and cyclodextrins. Jundishapur J Microbiol 6(5), UNSP e6333

    Google Scholar 

  123. Totterman AM, Schipper NGM, Thompson DO, Mannermaa JP (1997) Intestinal safety of water-soluble beta-cyclodextrins in paediatric oral solutions of spironolactone: effects on human intestinal epithelial Caco-2 cells. J Pharm Pharmacol 49(1):43–48

    Article  CAS  PubMed  Google Scholar 

  124. Loftsson T, Stefansson E (1997) Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 23(5):473–481

    Article  CAS  Google Scholar 

  125. Wang SL, Li DX, Ito Y, Nabekura T, Wang SJ, Zhang JH, Wu CF (2004) Bioavailability and anticataract effects of a topical ocular drug delivery system containing disulfiram and hydroxypropyl-betacyclodextrin on selenite-treated rats. Curr Eye Res 29(1):51–58

    Article  PubMed  CAS  Google Scholar 

  126. Zhang J, Wang L, Gao C, Zhang L, Xia H (2008) Ocular pharmacokinetics of topically-applied ketoconazole solution containing hydroxypropyl beta-cyclodextrin to rabbits. J Ocul Pharmacol Ther 24(5):501–506

    Article  CAS  PubMed  Google Scholar 

  127. Halim Mohamed MA, Mahmoud AA (2011) Formulation of indomethacin eye drops via complexation with cyclodextrins. Curr Eye Res 36(3):208–216

    Article  CAS  PubMed  Google Scholar 

  128. Mahmoud AA, El-Feky GS, Kamel R, Awad GEA (2011) Chitosan/sulfobutylether-beta-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm 413(1–2):229–236

    Article  CAS  PubMed  Google Scholar 

  129. Chen J, Zhou R, Li L, Li B, Zhang X, Su J (2013) Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel. Molecules 18(10):12415–12425

    Article  CAS  PubMed  Google Scholar 

  130. Glisoni RJ, Garcia-Fernandez MJ, Pino M, Gutkind G, Moglioni AG, Alvarez-Lorenzo C, Concheiro A, Sosnik A (2013) beta-Cyclodextrin hydrogels for the ocular release of antibacterial thiosemicarbazones. Carbohydr Polym 93(2):449–457

    Article  CAS  PubMed  Google Scholar 

  131. Hu X, Qiu J, Tan H, Li D, Ma X (2013) Synthesis and characterization of cyclodextrin-containing hydrogel for ophthalmic drugs delivery. J Macromol Sci Part A Pure Appl Chem 50(9):983–990

    Article  CAS  Google Scholar 

  132. Moya-Ortega MD, Alves TFG, Alvarez-Lorenzo C, Concheiro A, Stefansson E, Thorsteinsdottir M, Loftsson T (2013) Dexamethasone eye drops containing gamma-cyclodextrin-based nanogels. Int J Pharm 441(1–2):507–515

    Article  CAS  PubMed  Google Scholar 

  133. Pawar P, Kashyap H, Malhotra S, Sindhu R (2013) Hp-beta-CD-voriconazole in situ gelling system for ocular drug delivery: in vitro, stability, and antifungal activities assessment. BioMed Res Int 2013:341218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank X. Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liu, S., Jones, L.W., Gu, F.X. (2016). Nanotechnology and Nanomaterials in Ophthalmic Drug Delivery. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_5

Download citation

Publish with us

Policies and ethics