Skip to main content

Nanosystem in Ocular Bioenvironment

  • Chapter
  • First Online:
Book cover Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

Delivering drugs at effective therapeutic concentrations to the ocular tissue with minimal side effects is a challenging task. Various physiological and anatomical barriers impede effective ocular delivery. Numerous approaches have been adapted to increase the bioavailability and the duration of drug action, but the effectiveness of drugs still have their limitations. Recently, nanotechnology-based drug delivery approaches have emerged as promising strategies for the delivery of water-soluble/water-insoluble drugs due to improved targeting capability, solubility, efficacy, and safety in administration. Here in this chapter, we have presented an overview of different biological barriers of ocular drug delivery and have reported how different nanocarriers are effective in ocular therapy with improved patient compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sahoo S, Dilnawaz F, Krishnakumar S (2008) Nanotechnology in ocular drug delivery. Drug Discov Today 13:144–151

    Article  CAS  PubMed  Google Scholar 

  2. Urtti A (2006) Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 58:1131–1135

    Article  CAS  PubMed  Google Scholar 

  3. Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML (2011) Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B: Biointerfaces 88:150–157

    Article  PubMed  Google Scholar 

  4. Kang-Mieler J, Osswald C, Mieler W (2014) Advances in ocular drug delivery: emphasis on the posterior segment. Expert Opin Drug Deliv 11:1647–1660

    Article  CAS  PubMed  Google Scholar 

  5. Ali J, Fazil M, Qumbar M, Khan N, Ali A (2014) Colloidal drug delivery system: amplify the ocular delivery. Drug deliv 1–17

    Google Scholar 

  6. Szczesna I, Iskander DR (2012) Future directions in noninvasive measurements of tear film surface kinetics. Optom Vis Sci 89:749–759

    Article  Google Scholar 

  7. Montes-Mico R, Cervino A, Ferrer-Blasco T, García-Lázaro S, Madrid-Costa D (2010) The tear film and the optical quality of the eye. Ocul Surf 8:185–192

    Article  PubMed  Google Scholar 

  8. Stahl U, Willcox M, Stapleton F (2012) Osmolality and tear film dynamics. Clin Exp Optom 95:3–11

    Article  PubMed  Google Scholar 

  9. Baspinar Y, Bertelmann E, Pleyer U, Buech G, Siebenbrodt I, Borchert HH (2008) Corneal permeation studies of everolimus microemulsion. J Ocul Pharmacol Ther 24:399–402

    Article  CAS  PubMed  Google Scholar 

  10. Muller L, Marfurt CF, Kruse F, Tervo TM (2003) Corneal nerves: structure, contents and function. Exp Eye Res 76:521–542

    Article  CAS  PubMed  Google Scholar 

  11. Araujo J, Gonzalez E, Egea MA, Garcia ML, Souto EB (2009) Nanomedicines for ocular NSAIDs: safety on drug delivery. Nanomedicine 5:394–401

    CAS  PubMed  Google Scholar 

  12. Fischbarg J, da Silva-Cunha (2006) The corneal endothelium. In: Fischbarg J (ed) The biology of eye. Academic, New York, pp 113–125

    Google Scholar 

  13. Singh D (2003) Conjunctival lymphatic system. J Cataract Refract Surg 29:632–633

    Article  PubMed  Google Scholar 

  14. Pescina S, Santi P, Ferrari G, Nicoli S (2011) Trans-scleral delivery of macromolecules. Ther Deliv 2:1331–1349

    Article  CAS  PubMed  Google Scholar 

  15. Miao H, Wu BD, Tao Y, Li XX (2013) Diffusion of macromolecules through sclera. Acta Ophthalmol Scand 91:e1–e6

    Article  CAS  Google Scholar 

  16. Wen H, Hao J, Li SK (2013) Characterization of human sclera barrier properties for transscleral delivery of bevacizumab and ranibizumab. J Pharm Sci 102:892–903

    Article  CAS  PubMed  Google Scholar 

  17. Singh V, Ahmad R, Heming T (2011) The challenges of ophthalmic drug delivery: a review. Int J Drug Discov 3:56–62

    Article  Google Scholar 

  18. Freddo TF (2013) A contemporary concept of the blood-aqueous barrier. Prog Retin Eye Res 32:181–195

    Article  CAS  PubMed  Google Scholar 

  19. Kaur I, Kanwar M (2002) Ocular preparations: the formulation approach. Drug Dev Ind Pharm 28:473–493

    Article  CAS  PubMed  Google Scholar 

  20. Dey S, Gunda S, Mitra AK (2004) Pharmacokinetics of erythromycin in rabbit corneas after single-dose infusion: role of P-glycoprotein as a barrier to in vivo ocular drug absorption. J Pharmacol Exp Ther 311:246–255

    Article  CAS  PubMed  Google Scholar 

  21. Constable P, Lawrenson JG, Dolman DE, Arden GB, Abbott NJ (2006) P-Glycoprotein expression in human retinal pigment epithelium cell lines. Exp Eye Res 83:24–30

    Article  CAS  PubMed  Google Scholar 

  22. Dey S, Patel J, Anand BS, Jain-Vakkalagadda B, Kaliki P, Pal D, Ganapathy V, Mitra AK (2003) Molecular evidence and functional expression of P-glycoprotein (MDR1) in human and rabbit cornea and corneal epithelial cell lines. Invest Ophthalmol Vis Sci 44:2909–2918

    Article  PubMed  Google Scholar 

  23. Gaudana R, Ananthula HK, Parenky A, Mitra AK (2010) Ocular drug delivery. AAPS J 12:348–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Aksungur P, Demirbilek M, Denkbas EB, Vandervoot J, Ludwik A, Unlu N (2011) Development and characterization of cyclosporine a loaded NPs for ocular drug delivery: cellular toxicity, uptake, and kinetic studies. J Control Release 151:286–294

    Article  CAS  PubMed  Google Scholar 

  25. Sahoo S, Labhasetwar V (2003) Nanotech approaches to drug delivery and imaging. Drug Discov Today 8:1112–1120

    Article  CAS  PubMed  Google Scholar 

  26. Jain K, Kumar RS, Sood S, Dhyanandhan G (2013) Betaxolol hydrochloride loaded chitosan NPs for ocular delivery and their anti-glaucoma efficacy. Curr Drug Deliv 10:193–199

    Article  Google Scholar 

  27. Merodio M, Irache JM, Valamanesh F, Mirshahi M (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23:1587–1594

    Article  CAS  PubMed  Google Scholar 

  28. Vandervoort J, Ludwig A (2007) Ocular drug delivery: nanomedicine applications. Nanomedicine (Lond) 2:11–21

    Article  CAS  Google Scholar 

  29. Zhu X, Su M, Tang S, Wang L, Liang X, Meng F, Hong Y, Xu Z (2012) Synthesis of thiolated chitosan and preparation NPs with sodium alginate for ocular drug delivery. Mol Vis 18:1973–1982

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jwala J, Boddu SH, Shah S, Sirimulla S, Pal D, Mitra AK (2011) Ocular sustained release NPs containing stereoisomeric dipeptide prodrugs of acyclovir. J Ocul Pharmacol Ther 27:163–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Agnihotri S, Vavia PR (2009) Diclofenac loaded biopolymeric nanosuspension for ophthalmic application. Nanomedicine 5:90–95

    CAS  PubMed  Google Scholar 

  32. Chennamaneni S, Mamalis C, Archer B, Oakey Z, Ambati BK (2013) Development of a novel bioerodible dexamethasone implant for uveitis and postoperative cataract inflammation. J Control Release 167(1):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Başaran E, Yenilmez E, Berkman MS, Büyükköroğlu G, Yazan Y (2013) Chitosan NPs for ocular delivery of cyclosporine A. J Microencapsul 41:49–57

    Google Scholar 

  34. Sabzevari A, Adibkia K, Hashemi H, De- Geest BG, Mohsenzadeh N, Atyabi F, Ghahremani MH, Khoshayand MR, Dinarvand R (2013) Improved antiinflammatory effects in rabbit eye model using biodegradable poly beta-amino ester NPs of triamcinolone acetonide. Invest Ophthalmol Vis Sci 54:5520–5526

    Article  CAS  PubMed  Google Scholar 

  35. Wadhwa S, Paliwal R, Paliwal SR, Vyas SP (2009) Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des 15:2724–2750

    Article  CAS  PubMed  Google Scholar 

  36. Tayel S, El-Nabarawi MA, Tadros MI, Abd-Elsalam WH (2013) Positively charged polymeric nanoparticle reservoirs of terbinafine hydrochloride: preclinical implications for controlled drug delivery in the aqueous humor of rabbits. AAPS PharmSciTech 14:782–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Singh J, Chhabra G, Pathak K (2013) Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm 40:1223–1232

    Article  PubMed  Google Scholar 

  38. Du Toit LC, Govender T, Carmichael T, Kumar P, Choonara YE, Pillay V (2013) Design of an antiinflammatory composite nanosystem and evaluation of its potential for ocular drug delivery. J Pharm Sci 102:2780–2805

    Article  PubMed  Google Scholar 

  39. Mohammed N, Rejinold NS, Mangalathillam S, Biswas R, Nair SV, Jayakumar R (2013) Fluconazole loaded chitin nanogels as a topical ocular drug delivery agent for corneal fungal infections. J Biomed Nanotechnol 9:1521–1531

    Article  CAS  PubMed  Google Scholar 

  40. Jayaraman M, Bharali DJ, Sudha T, Mousa SA (2012) Nano chitosan peptide as a potential therapeutic carrier for retinal delivery to treat age-related macular degeneration. Mol Vis 18:2300–2308

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Pascolini D, Mariotti SP (2012) Global estimates of visual impairment: 2010. Brit J Ophthalmol 96:614–618

    Article  Google Scholar 

  42. Tratta E, Pescina S, Padula C, Santi P, Nicoli S (2014) In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery. Eur J Pharm Biopharm

    Google Scholar 

  43. Pescina S, Antopolsky M, Santi P, Nicoli S, Murtomäki L (2013) Effect of iontophoresis on the in vitro trans-scleral transport of three single stranded oligonucleotides. Eur J Pharm Sci 49:142–147

    Article  CAS  PubMed  Google Scholar 

  44. Rootman D, Jantzen JA, Gonzalez JR, Fischer MJ, Beuerman R, Hill JM (1988) Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci 29:1397–1401

    CAS  PubMed  Google Scholar 

  45. Seyfoddin A, Shaw J, Al-Kassas R (2010) Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 17:1–23

    Article  Google Scholar 

  46. Delgado D, del Pozo-Rodríguez A, Solinís MA, Rodríguez-Gascón A (2011) Understanding the mechanism of protamine in solid lipid nanoparticle-based lipofection: the importance of the entry pathway. Eur J Pharm Biopharm 79:495–502

    Article  CAS  PubMed  Google Scholar 

  47. Gasco’n AR, Solinı’s MA, del Pozo-Rodrı’guez A, Delgado D, Pedraz JL (2012) Lipid nanoparticles for gene therapy (EP 2 460 516 A2)

    Google Scholar 

  48. Attama AA, Reichl S, Müller-Goymann CC (2009) Sustained release and permeation of timolol from surface-modified solid lipid nanoparticles through bioengineered human cornea. Curr Eye Res 34:698–705

    Article  CAS  PubMed  Google Scholar 

  49. Diebold Y, Jarrin M, Saiez V, Carvalho EL, Orea M, Calonge M, Seijo B, Alonso MJ (2007) Ocular drug delivery by liposome-chitosan nanoparticle complexes (LCS-NP). Biomaterials 28:1553–1564

    Article  CAS  PubMed  Google Scholar 

  50. Khan ASP, Visht S, Malviya R (2011) Niosomes as colloidal drug delivery system: a review. J Chronother Drug Del 2:15–21

    Google Scholar 

  51. Basha M, Abd El-Alim SH, Shamma RN, Awad GE (2013) Design and optimization of surfactant based nanovesicles for ocular delivery of Clotrimazole. J Liposome Res 23:203–210

    Article  CAS  PubMed  Google Scholar 

  52. Abdelkader H, Wu Z, Al-Kassas R, Alany R (2012) Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharmaceu 433:142–148

    Article  CAS  Google Scholar 

  53. Aggarwal D, Garg A, Kaur I (2004) Development of a topical niosomal preparation of acetazolamide: preparation and evaluation. J Pharm Pharmacol 1–9

    Google Scholar 

  54. Aggarwal D, Kaur IP (2005) Improved pharmacodynamics of timolol maleate from a mucoadhesive niosomal ophthalmic drug delivery system. Int J Pharm 290:155–159

    Article  CAS  PubMed  Google Scholar 

  55. Vandamme TF, Brobeck L (2005) Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release 102:23–38

    Article  CAS  PubMed  Google Scholar 

  56. Durairaj C, Kadam RS, Chandler JW, Hutcherson SL, Kompella UB (2010) Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability and delivery of gatifloxacin. Invest Ophthalmol Vis Sci 51:5804–5816

    Article  PubMed  Google Scholar 

  57. Sugisaki K, Usui T, Nishiyama N, Jang WD, Yanagi Y, Yamagami S, Amano S, Kataoka K (2008) Photodynamic therapy for corneal neovascularization using polymeric micelles encapsulating dendrimer porphyrins. Invest Ophthalmol Vis Sci 49:894–899

    Article  PubMed  Google Scholar 

  58. Kang SJ, Durairaj C, Kompella UB, O’Brien JM, Grossniklaus H (2009) Subconjunctival nanoparticle carboplatin in the treatment of murine retinoblastoma. Arch Ophthalmol 127:1043–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Marano RJ, Toth I, Wimmer N, Brankov M, Rakoczy PE (2005) Dendrimer delivery of an anti-vegf oligonucleotide into the eye: a long-term study into inhibition of laser-induced cnv, distribution, uptake and toxicity. Gene Therapy 12:1544–1550

    Article  CAS  PubMed  Google Scholar 

  60. Holden CA, Tyagi P, Thakur A, Kadam R, Jadhav G, Kompella UB, Yang H (2012) Polyamidoamine dendrimer hydrogel for enhanced delivery of antiglaucoma drugs. Nanomedicine 8:776–783

    CAS  PubMed  Google Scholar 

  61. Makky A, Michel JP, Maillard P, Rosilio V (1808) Biomimetic liposomes and planar supported bilayers for the assessment of glycodendrimeric porphyrins interaction with an immobilized lectin. Biochim Biophys Acta 2011:656–666

    Google Scholar 

  62. Nishiyama N, Stapert HR, Zhang GD, Takasu D, Jiang D-L, Nagano T, Aida T, Kataoka K (2003) Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug Chem 14:58–66

    Article  CAS  PubMed  Google Scholar 

  63. Lallemanda F, Felt-Baeyensa O, Besseghirb K, Behar-Cohen F, Gurny R (2003) Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm 56:307–318

    Article  Google Scholar 

  64. Suresh P, Dewangan D (2011) Ophthalmic delivery system for dexamethasone: an overview. Int J Inno Pharm Res 2:161–165

    CAS  Google Scholar 

  65. Yeh S, Nussenblatt RB (2008) Fluocinolone acetonide for the treatment of uveitis: weighing the balance between local and systemic immunosuppression. Arch Ophthalmol 126:1287–1289

    Article  PubMed  Google Scholar 

  66. Amrite A, Kompella UB (2006) Nanoparticles for ocular drug delivery. In: Gupta RB, Kompella UB (eds) Nanoparticle technology for drug delivery,vol 159, pp 319–353

    Google Scholar 

  67. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, BenEzra D, Behar-Cohen FF (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 44:3562–3569

    Article  PubMed  Google Scholar 

  68. De Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, Garcia E, Couvreur P (2004) Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol 34:3702–3712

    Article  PubMed  Google Scholar 

  69. Farjo R, Skaggs J, Quiambao AB, Cooper MK, Naash MI (2006) Efficient Non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS One 1:e38

    Article  PubMed  PubMed Central  Google Scholar 

  70. Klausner EA, Zhang Z, Chapman RL, Multack RF, Volin MV (2010) Ultrapure chitosan oligomers as carriers for corneal gene transfer. Biomaterials 31:1814–1820

    Article  CAS  PubMed  Google Scholar 

  71. Normand N, Valamanesh F, Savoldelli M, Mascarelli F, BenEzra D, Courtois Y, Behar-Cohen F (2005) VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. Mol Vis 11:184–191

    CAS  PubMed  Google Scholar 

  72. Ding X, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI (2009) Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One 4:e7410

    Article  PubMed  PubMed Central  Google Scholar 

  73. Alqawlaq S, Sivak JM, Huzil JT, Ivanova MV, Flanagan JG, Beazely MA, Foldvari M (2014) Preclinical development and ocular biodistribution of Gemini-DNA nanoparticles after intravitreal and topical administration: towards non-invasive glaucoma gene therapy. Nanomedicine 10(8):1637–1647, S1549-9634(14)00223-8

    CAS  PubMed  Google Scholar 

  74. Apaolaza P, Delgado D, del Pozo-Rodríguez A, Gascón AR, Solinís MÁ (2014) A novel gene therapy vector based on hyaluronic acid and solid lipid nanoparticles for ocular diseases. Int J Pharm 465:413–426

    Article  CAS  PubMed  Google Scholar 

  75. Mitra R, Han Z, Merwin M, Al Taai M, Conley SM, Naash MI (2014) Synthesis and characterization of glycol chitosan DNA nanoparticles for retinal gene delivery. ChemMedChem 9:189–196

    Article  CAS  PubMed  Google Scholar 

  76. Fusco S, Ullrich F, Pokki J, Chatzipirpiridis G, Ozkale B, Sivaraman KM, Ergeneman O, Pané S, Nelson BJ (2014) Microrobots: a new era in ocular drug delivery. Expert Opin Drug Deliv:1–12

    Google Scholar 

  77. Ergeneman O, Dogangil G, Kummer MP, Abbott JJ, Nazeeruddin MK, Nelson BJ (2008) A magnetically controlled wireless optical oxygen sensor for intraocular measurements. IEEE Sens J 8:29–37

    Article  CAS  Google Scholar 

  78. Shahid H, Hossain P, Amoaku WM (2006) The management of retinal vein occlusion: is interventional ophthalmology the way forward? British J Ophthalmol 90:627–639

    Article  CAS  Google Scholar 

  79. Dogangil G, Ergeneman O, Abbott JJ, Pane S, Hall H, Muntwyler S, Nelson BJ (2008) Toward targeted retinal drug delivery with wireless magnetic microrobots. In: Proceedings of IEEE/RSJ international conference on intelligent robots and systems, pp 1921–1926

    Google Scholar 

  80. Kummer M, Abbott JJ, Kratochvil BE et al (2010) OctoMag: an electromagnetic system for 5-DOF wireless micromanipulation. IEEE Trans Robot 26:1006–1017

    Article  Google Scholar 

  81. Ullrich F, Bergeles C, Pokki J, Ergeneman O, Erni S, Chatzipirpiridis G, Pané S, Framme C, Nelson BJ (2013) Mobility experiments with microrobots for minimally invasive intraocular surgery. Invest Ophthalmol Vis Sci 54:2853–2863

    Article  PubMed  Google Scholar 

  82. Sawan (2011) Intra-cortical visual prosthesis. Montréal polytechnical

    Google Scholar 

  83. Srivastava N, Troyk P, Dagnelie G (2009) Detection, eye-hand coordination and virtual mobility performance in simulated vision for a cortical visual prosthesis device. J Neural Eng 6:035008

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mathieson K, Loudin J, Goetz G, Huie P, Wang L, Kamins TI, Galambos L, Smith R, Harris JS, Sher A, Palanker D (2012) Photovoltaic retinal prosthesis with high pixel density. Nat Photonics 6:391–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Cunha-Vaz J, Ashton P, Iezzi R, Campochiaro P, Dugel PU, Holz FG, Weber M, Danis RP, Kuppermann BD, Bailey C, Billman K, Kapik B, Kane F, Green K, FAME Study Group (2014) Sustained delivery fluocinolone acetonide vitreous implants: long-term benefit in patients with chronic diabetic macular edema. Ophthalmology 121(10):1892–1904, pii: S0161-6420(14)00366-2

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeeb Kumar Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dilnawaz, F., Sahoo, S.K. (2016). Nanosystem in Ocular Bioenvironment. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_23

Download citation

Publish with us

Policies and ethics