Skip to main content

Ophthalmic Nanosuspensions: Toxicity and Formulation

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery
  • 1335 Accesses

Abstract

Treatment of posterior regions of the eye is challenging due to the difficulties faced with overcoming the blood-retinal barrier and the blood-aqueous barrier. In efforts to find a nontoxic and less invasive approach, nanoparticles have shown significant potential based on their size and composition. Many of the vectors discussed, such as PLGA, are biocompatible. Eudragit nanoparticles show low levels of toxicity in ocular models. Chitosan used in nanoparticle formulation is derived from chitin, an organic source. Additionally, human serum albumin-based nanoparticles show effective drug delivery through in vivo studies. The antibacterial properties of silver and its accessibility have led to studies investigating its potential with nanoparticles. Liposomes and nanomicelles interact similarly as they are able to entrap hydrophobic drugs for delivery. With proper use of these vectors in terms of formulation of nanosuspensions, there is potential for treating ocular diseases. Furthermore, the biological breakdown of these nanosuspensions emphasizes their biocompatibility. Incorporating other vectors and biomolecules will allow for new avenues with ocular drug delivery and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Del Amo EM, Urtti A (2008) Current and future ophthalmic drug delivery systems: a shift to the posterior segment. Drug Discov Today 13(3):135–143

    PubMed  Google Scholar 

  2. Urtti A et al (1990) Controlled drug delivery devices for experimental ocular studies with timolol 2. Ocular and systemic absorption in rabbits. Int J Pharm 61(3):241–249

    Article  CAS  Google Scholar 

  3. Maurice D, Mishima S (1984) Ocular pharmacokinetics. In: Pharmacology of the eye. Springer, New York, pp 19–116

    Chapter  Google Scholar 

  4. Prow TW (2010) Toxicity of nanomaterials to the eye. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(4):317–333

    Article  CAS  PubMed  Google Scholar 

  5. Pignatello R, Bucolo C, Puglisi G (2002) Ocular tolerability of Eudragit RS100® and RL100® nanosuspensions as carriers for ophthalmic controlled drug delivery. J Pharm Sci 91(12):2636–2641

    Article  CAS  PubMed  Google Scholar 

  6. Pignatello R et al (2002) Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application. Biomaterials 23(15):3247–3255

    Article  CAS  PubMed  Google Scholar 

  7. Pignatello R et al (2002) Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci 16(1):53–61

    Article  CAS  PubMed  Google Scholar 

  8. Wang JJ et al (2011) Recent advances of chitosan nanoparticles as drug carriers. Int J Nanomedicine 6:765–774

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11

    Article  CAS  PubMed  Google Scholar 

  10. Dornish M et al (1997) Safety of protasan: ultrapure chitosan salts for biomedical and pharmaceutical use. In: 7th international conference on chitin and chitosan, Lyon

    Google Scholar 

  11. Prow TW et al (2008) Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium. Nanomedicine 4(4):340–349

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37(1):57–84

    CAS  PubMed  Google Scholar 

  13. Kragh-Hansen U, Chuang VTG, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25(6):695–704

    Article  CAS  PubMed  Google Scholar 

  14. Tripathi RC, Millard CB, Tripathi BJ (1989) Protein composition of human aqueous humor: SDS-PAGE analysis of surgical and post-mortem samples. Exp Eye Res 48(1):117–130

    Article  CAS  PubMed  Google Scholar 

  15. Sabah JR et al (2004) In vivo passage of albumin from the aqueous humor into the lens. Mol Vis 10:254–259

    CAS  PubMed  Google Scholar 

  16. Kim H, Robinson SB, Csaky KG (2009) Investigating the movement of intravitreal human serum albumin nanoparticles in the vitreous and retina. Pharm Res 26(2):329–337

    Article  CAS  PubMed  Google Scholar 

  17. Irache J et al (2005) Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini Rev Med Chem 5(3):293–305

    Article  CAS  PubMed  Google Scholar 

  18. Pitkänen L et al (2003) Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharm Res 20(4):576–583

    Article  PubMed  Google Scholar 

  19. Mo Y et al (2007) Human serum albumin nanoparticles for efficient delivery of Cu, Zn superoxide dismutase gene. Mol Vis 13:746

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Merodio M et al (2002) Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials 23(7):1587–1594

    Article  CAS  PubMed  Google Scholar 

  21. Kalishwaralal K et al (2010) Silver nano—a trove for retinal therapies. J Control Release 145(2):76–90

    Article  CAS  PubMed  Google Scholar 

  22. Gurunathan S et al (2009) Antiangiogenic properties of silver nanoparticles. Biomaterials 30(31):6341–6350

    Article  CAS  PubMed  Google Scholar 

  23. Kalishwaralal K et al (2009) Silver nanoparticles inhibit VEGF induced cell proliferation and migration in bovine retinal endothelial cells. Colloids Surf B Biointerfaces 73(1):51–57

    Article  CAS  PubMed  Google Scholar 

  24. Kalimuthu K et al (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1):150–153

    Article  CAS  PubMed  Google Scholar 

  25. Sah H et al (2013) Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 8:747

    Article  PubMed  PubMed Central  Google Scholar 

  26. Qaddoumi MG et al (2004) The characteristics and mechanisms of uptake of PLGA nanoparticles in rabbit conjunctival epithelial cell layers. Pharm Res 21(4):641–648

    Article  CAS  PubMed  Google Scholar 

  27. Xu J et al (2007) Inhibitory efficacy of intravitreal dexamethasone acetate-loaded PLGA nanoparticles on choroidal neovascularization in a laser-induced rat model. J Ocul Pharmacol Ther 23(6):527–540

    Article  CAS  PubMed  Google Scholar 

  28. Honda M et al (2013) Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine 8:495

    Article  PubMed  PubMed Central  Google Scholar 

  29. Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303(5665):1818–1822

    Article  CAS  PubMed  Google Scholar 

  30. Sapra P, Tyagi P, Allen TM (2005) Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv 2(4):369–381

    Article  CAS  PubMed  Google Scholar 

  31. Van Rooijen N, van Nieuwmegen R (1980) Liposomes in immunology: multilamellar phosphatidylcholine liposomes as a simple, biodegradable and harmless adjuvant without any immunogenic activity of its own. Immunol Invest 9(3):243–256

    Google Scholar 

  32. Díaz-Llopis M et al (1992) Liposomally-entrapped ganciclovir for the treatment of cytomegalovirus retinitis in AIDS patients. Doc Ophthalmol 82(4):297–305

    Article  PubMed  Google Scholar 

  33. Cannon JP et al (2003) Comparative toxicity and concentrations of intravitreal amphotericin B formulations in a rabbit model. Invest Ophthalmol Vis Sci 44(5):2112–2117

    Article  PubMed  Google Scholar 

  34. Dua J, Rana A, Bhandari A (2012) Liposome: methods of preparation and applications. Int J Pharm Stud Res 3:14–20

    Google Scholar 

  35. Vaishya RD et al (2014) Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 6:422–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Di Tommaso C et al (2011) Ocular biocompatibility of novel cyclosporin a formulations based on methoxy poly(ethylene glycol)-hexylsubstituted poly(lactide) micelle carriers. Int J Pharm 416(2):515–524

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashwant Pathak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, P., Grover, A., Hirani, A., Lee, Y.W., Pathak, Y. (2016). Ophthalmic Nanosuspensions: Toxicity and Formulation. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_20

Download citation

Publish with us

Policies and ethics