Skip to main content

Nanovesicular Carrier Systems for Ophthalmic Drug Delivery

  • Chapter
  • First Online:
Nano-Biomaterials For Ophthalmic Drug Delivery

Abstract

Ophthalmic drug delivery systems include a range of pharmaceutical dosage forms capable of either topical or systemic drug delivery. Nanovesicular drug delivery systems have been explored extensively for various such ophthalmic applications. Drug delivery using the nanovesicular systems requires a thorough understanding of the anatomy of the eye to determine the barriers and pathways. A good vesicular system is able to utilize these pathways and cross the barriers efficiently to deliver drugs to either topical or systemic tissues. Nanovesicular systems offer several advantages including good permeability, prolonged residence/contact time, sustained release profiles, easy administration, and are often patient compliant. Liposomes, niosomes, pharmacosomes, and spanlastics are some of the frequently studied nanovesicular drug delivery systems for ophthalmic applications. Multiple commercial ophthalmic liposomal products are available; however, many more are still being evaluated and are pending clinical trials. Formulation and development of these vesicular delivery systems has evolved in the past few decades to resolve issues related to vesicular aggregation, collapse of the vesicular system, and toxicity concerns. Approaches such as surface modification to avoid aggregation and use of cyclodextrin polymers for enhanced drug loading and stability are some of the examples. Overall, nanovesicles for ophthalmic drug delivery are a promising approach to deliver both hydrophilic and hydrophobic drug candidates efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Patel PB, Shastri D, Shelat PK, Shukla AK (2010) Ophthalmic drug delivery system: challenges and approaches. Syst Rev Pharm 1:8

    Article  Google Scholar 

  2. Barar J, Asadi M, Mortazavi-Tabatabaei SA, Omidi Y (2009) Ocular drug delivery; Impact of in vitro cell culture models. J Ophthalmic Vis Res 4:238–252

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mishra GP, Bagui M, Tamboli V, Mitra AK (2011) Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv 2011:863734

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bourlais CL, Acar L, Zia H, Sado PA, Needham T, Leverge R (1998) Ophthalmic drug delivery systems – recent advances. Prog Retin Eye Res 17:33–58

    Article  CAS  PubMed  Google Scholar 

  5. Felt O, Furrer P, Mayer JM, Plazonnet B, BURI P, Gurny R (1999) Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int J Pharm 180:185–193

    Article  CAS  PubMed  Google Scholar 

  6. Sasaki H, Karasawa K, Hironaka K, Tahara K, Tozuka Y, Takeuchi H (2013) Retinal drug delivery using eyedrop preparations of poly-L-lysine-modified liposomes. Eur J Pharm Biopharm 83:364–369

    Article  CAS  PubMed  Google Scholar 

  7. Schaeffer HE, Krohn DL (1982) Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 22:220–227

    CAS  PubMed  Google Scholar 

  8. Smolin G, Okumoto M, Feiler S, Condon D (1981) Idoxuridine-liposome therapy for herpes simplex keratitis. Am J Ophthalmol 91:220–225

    Article  CAS  PubMed  Google Scholar 

  9. Velpandian T, Narayanan K, Nag TC, Ravi AK, Gupta SK (2006) Retinal toxicity of intravitreally injected plain and liposome formulation of fluconazole in rabbit eye. Indian J Ophthalmol 54:237–240

    Article  PubMed  Google Scholar 

  10. Zhang R, He R, Qian J, Guo J, Xue K, Yuan YF (2010) Treatment of experimental autoimmune uveoretinitis with intravitreal injection of tacrolimus (FK506) encapsulated in liposomes. Invest Ophthalmol Vis Sci 51:3575–3582

    Article  PubMed  Google Scholar 

  11. Abdelbary G (2011) Ocular ciprofloxacin hydrochloride mucoadhesive chitosan-coated liposomes. Pharm Dev Technol 16:44–56

    Article  CAS  PubMed  Google Scholar 

  12. Natarajan JV, Ang M, Darwitan A, Chattopadhyay S, Wong TT, Venkatraman SS (2012) Nanomedicine for glaucoma: liposomes provide sustained release of latanoprost in the eye. Int J Nanomedicine 7:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mokhtar Ibrahim M, Tawfique SA, Mahdy MM (2014) Liposomal diltiazem HCl as ocular drug delivery system for glaucoma. Drug Dev Ind Pharm 40:765–773

    Article  CAS  PubMed  Google Scholar 

  14. Davis BM, Normando EM, Guo L, Turner LA, Nizari S, O’shea P, Moss SE, Somavarapu S, Cordeiro MF (2014) Topical delivery of Avastin to the posterior segment of the eye in vivo using annexin A5-associated liposomes. Small 10:1575–1584

    Article  CAS  PubMed  Google Scholar 

  15. Yu S, Wang QM, Wang X, Liu D, Zhang W, Ye T, Yang X, Pan W (2015) Liposome incorporated ion sensitive in situ gels for opthalmic delivery of timolol maleate. Int J Pharm 480:128–136

    Article  CAS  PubMed  Google Scholar 

  16. Souza JG, Dias K, Pereira TA, Bernardi DS, Lopez RF (2014) Topical delivery of ocular therapeutics: carrier systems and physical methods. J Pharm Pharmacol 66:507–530

    Article  CAS  PubMed  Google Scholar 

  17. Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K (2014) Nonionic surfactant vesicles in ocular delivery: innovative approaches and perspectives. Biomed Res Int 2014:263604

    Article  PubMed  PubMed Central  Google Scholar 

  18. Abdelkader H, Ismail S, Kamal A, Alany RG (2011) Design and evaluation of controlled-release niosomes and discomes for naltrexone hydrochloride ocular delivery. J Pharm Sci 100:1833–1846

    Article  CAS  PubMed  Google Scholar 

  19. Vyas SP, Mysore N, Jaitely V, Venkatesan N (1998) Discoidal niosome based controlled ocular delivery of timolol maleate. Pharmazie 53:466–469

    CAS  PubMed  Google Scholar 

  20. Abdelkader H, Wu Z, Al-Kassas R, Alany RG (2012) Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. Int J Pharm 433:142–148

    Article  CAS  PubMed  Google Scholar 

  21. Prabhu P, Nitish KR, Koland M, Harish N, Vijayanarayan K, Dhondge G, Charyulu R (2010) Preparation and evaluation of nano-vesicles of brimonidine tartrate as an ocular drug delivery system. J Young Pharm 2:356–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Akhtar N (2013) Vesicular ocular drug delivery system: preclinical and clinical perspective of drugs delivered via niosomes. Int J Biopharm 4:11

    Google Scholar 

  23. Maiti S, Paul S, Mondol R, Ray S, Sa B (2011) Nanovesicular formulation of brimonidine tartrate for the management of glaucoma: in vitro and in vivo evaluation. AAPS PharmSciTech 12:755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gupta N, Shrivastava V, Saxena S, Pandey A (2010) Formulation and evaluation of non-ionic surfactant vesicles (niosomes) for ocular delivery of ofloxacin. Int J Pharm Life Sci 1:413–418

    CAS  Google Scholar 

  25. Karthikeyan D, Pandey VP (2009) Study on ocular absorption of diclofenac sodium niosome in rabbits eye. Pharmacologyonline 1:769–779

    Google Scholar 

  26. Kaur IP, Garg A, Singla AK, Aggarwal D (2004) Vesicular systems in ocular drug delivery: an overview. Int J Pharm 269:1–14

    Article  CAS  PubMed  Google Scholar 

  27. Patidar S, Jain S (2012) Non-ionic surfactant based vesicles (Niosomes) containing Flupirtine Maleate as an ocular drug delivery system. J Chem Pharm Res 4:4495–4500

    CAS  Google Scholar 

  28. Abdelbary G, El-Gendy N (2008) Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 9:740–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yasin MN, Hussain S, Malik F, Hameed A, Sultan T, Qureshi F, Riaz H, Perveen G, Wajid A (2012) Preparation and characterization of chloramphenicol niosomes and comparison with chloramphenicol eye drops (0.5%w/v) in experimental conjunctivitis in albino rabbits. Pak J Pharm Sci 25:117–121

    CAS  PubMed  Google Scholar 

  30. Aggarwal D, Pal D, Mitra AK, Kaur IP (2007) Study of the extent of ocular absorption of acetazolamide from a developed niosomal formulation, by microdialysis sampling of aqueous humor. Int J Pharm 338:21–26

    Article  CAS  PubMed  Google Scholar 

  31. Raghuwanshi N, Dikshit S, Sharma A, Upamanyu N, Dubey A, Pathak A (2010) Formulation and evaluation of niosome- encapsulated levofloxacin for ophthalmic controlled delivery. Int J Adv Pharm Res 3:901–906

    Google Scholar 

  32. Saettone MF, Perini G, Carafa M, Santucci E, Alhaique F (1996) Non-ionic surfactant vesicles as ophthalmic carriers for cyclopentolate. A preliminary evaluation. S T P Pharm Sci 6:94–98

    Google Scholar 

  33. Kaur IP, Aggarwal D, Singh H, Kakkar S (2010) Improved ocular absorption kinetics of timolol maleate loaded into a bioadhesive niosomal delivery system. Graefes Arch Clin Exp Ophthalmol 248:1467–1472

    Article  CAS  PubMed  Google Scholar 

  34. Pandita A, Sharma P (2013) Pharmacosomes: an emerging novel vesicular drug delivery system for poorly soluble synthetic and herbal drugs. ISRN Pharm 2013:348186

    PubMed  PubMed Central  Google Scholar 

  35. Ioele G, de Luca M, Ragno G (2014) Photostability of barnidipine in combined cyclodextrin-in-liposome matrices. Future Med Chem 6:35–43

    Article  CAS  PubMed  Google Scholar 

  36. Kaur IP, Chhabra S, Aggarwal D (2004) Role of cyclodextrins in ophthalmics. Curr Drug Deliv 1:351–360

    Article  CAS  PubMed  Google Scholar 

  37. Mccormack B, Gregoriadis G (1994) Entrapment of cyclodextrin-drug complexes into liposomes: potential advantages in drug delivery. J Drug Target 2:449–454

    Article  CAS  PubMed  Google Scholar 

  38. Fujisawa T, Miyai H, Hironaka K, Tsukamoto T, Tahara K, Tozuka Y, Ito M, Takeuchi H (2012) Liposomal diclofenac eye drop formulations targeting the retina: formulation stability improvement using surface modification of liposomes. Int J Pharm 436:564–567

    Article  CAS  PubMed  Google Scholar 

  39. Morand K, Bartoletti AC, Bochot A, Barratt G, Brandely ML, Chast F (2007) Liposomal amphotericin B eye drops to treat fungal keratitis: physico-chemical and formulation stability. Int J Pharm 344:150–153

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lipika Chablani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chablani, L., Kumar, V. (2016). Nanovesicular Carrier Systems for Ophthalmic Drug Delivery. In: Pathak, Y., Sutariya, V., Hirani, A. (eds) Nano-Biomaterials For Ophthalmic Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-29346-2_11

Download citation

Publish with us

Policies and ethics