Skip to main content

Modern Urban Rainwater Harvesting Systems: Design, Case Studies, and Impacts

  • Chapter
  • First Online:
Sustainable Water Management in Urban Environments

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 47))

Abstract

The popularity of rainwater harvesting has increased in recent years due to increasing demands on strained water supplies and infrastructure and increasing awareness of the benefits of green stormwater infrastructure. Active rainwater harvesting systems, in which the water is captured and stored in a tank or similar container, can be a major source of water in urban areas supplying non-potable end uses such as irrigation, toilet flushing, and cooling towers. Harvested rainwater is also used for potable uses commonly in developing nations and rarely in developed nations. The benefits of rainwater harvesting systems extend beyond water conservation to include alleviating the impact of stormwater runoff on surface waters, contributing to groundwater preservation, and reducing dependency on utility potable water and consequently energy conservation. This chapter focuses on active rainwater harvesting systems design and discusses environmental impacts and economic and life cycle assessment of rainwater harvesting systems. The chapter concludes with recommendations on future research needs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mays LW (2014) Use of cisterns during antiquity in the Mediterranean region for water resources sustainability. Water Sci Technol 14(1):38–47

    Google Scholar 

  2. Mays L, Antoniou GP, Angelakis AN (2013) Review: history of water cisterns. Water 5:1916–1940

    Article  Google Scholar 

  3. Crouch DP (1993) Water management in ancient Greek cities. Oxford University Press, New York, p 400

    Google Scholar 

  4. Vetter T, Riegera AK, Nicolaya A (2009) Ancient rainwater harvesting systems in the north-eastern Marmarica (north-western Egypt). Libyan Stud 40:9–23. doi:10.1017/S0263718900004489

    Article  Google Scholar 

  5. Guttmann-Bond E (2010) Sustainability out of the past: how archaeology can save the planet. World Archaeol 42(3):355–366. doi:10.1080/00438243.2010.497377

    Article  Google Scholar 

  6. Ferrand EA, Cecunjanin F (2014) Potential of rainwater harvesting in a thirsty world: a survey of ancient and traditional rainwater harvesting applications. Geogr Compass 8(6):395–413

    Article  Google Scholar 

  7. WHO and UNICEF (2015) Progress on sanitation and drinking water – 2015 update and Millennium Development Goals (MDG) assessment. United Nations, New York. Available: http://www.wssinfo.org/fileadmin/user_upload/resources/JMP-Update-report-2015_English.pdf. Accessed 30 Sept 2015

  8. Hejazi MI, Edmonds J, Clarke L, Kyle P, Davies E, Chaturvedi V, Calvin K (2014) Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies. Hydrol Earth Syst Sci 18(8):2859–2883

    Article  Google Scholar 

  9. Döll P, Müller S, Schuh C, Portmann FT, Eicker A (2014) Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Water Resour Res 50(7):5698–5720

    Article  Google Scholar 

  10. Jacobson MZ, Ten Hoeve JE (2012) Effect of urban surfaces and white roofs on global and regional climate. J Climate 25(3):1028–1044

    Article  Google Scholar 

  11. New York City Environmental Protection (2014) Water demand management plan. Available: http://www.nyc.gov/html/dep/pdf/conservation/water-demand-management-plan-spread.pdf . Accessed 19 Nov 2015

  12. National Oceanic and Atmospheric Administration (NOAA) (2015) National centers for environmental information, state of the climate: global analysis for annual 2014, published online January 2015. http://www.ncdc.noaa.gov/sotc/global/201413. Accessed 19 Nov 2015

  13. Younos T (2011) Paradigm shift: holistic approach for water management in urban environments. Front Earth Sci 5(4):421–427

    Google Scholar 

  14. Kloss C (2008) Managing wet weather with green infrastructure. Municipal Handbook Rainwater Harvesting Policies, EPA Low Impact Development Center. http://water.epa.gov/infrastructure/greeninfrastructure/upload/gi_munichandbook_harvesting.pdf . Accessed 6 Nov 2015

  15. United Nations Environment Programme (UNEP) (2009) Rainwater – a handbook on rainwater harvesting in the Caribbean. http://www.unep.org/ecosystemmanagement/Portals/7/Documents/em-rainwater-handbook-caribbean.pdf. Accessed 6 Nov 2015

  16. Lawson S, LaBranche-Tucker A, Otto-Wack H, Hall R, Sojka B, Crawford E, Crawford D, Brand C (2009) Virginia rainwater harvesting manual, 2nd ed. The Cabell Brand Center for Global Poverty and Resources Sustainability Studies, Salem. www.cabellbrandcenter.org. Accessed 1 Nov 2015

  17. Texas Rainwater Harvesting Manual (2005) Texas water control board. http://www.twdb.texas.gov/innovativewater/rainwater/docs.asp. Accessed 1 Nov 2015

  18. ARCSA/ASPE/ANSI (2013) Rainwater catchment systems, plumbing engineering & design standard – 63-2013. ARCSA (American Rainwater Catchment Systems Association), American Society of Plumbing Engineers (ASPE) and American National Standards Institute (ANSI), Rosemont, IL

    Google Scholar 

  19. ARCSA/ASPE/ANSI (2015) Stormwater harvesting system design for direct end-use applications – 78-2015. ARCSA (American Rainwater Catchment Systems Association), American Society of Plumbing Engineers (ASPE) and American National Standards Institute (ANSI), Rosemont, IL

    Google Scholar 

  20. Magyar MI, Ladson AR, Diaper C, Mitchell VG (2014) Influence of roofing materials and lead flashing on tank contamination by metals. Aust J Water Resour 18(1):71–83

    Article  Google Scholar 

  21. van Metre PC, Mahler BJ (2003) The contribution of particles washed from rooftops to contaminant loading to urban streams. Chemosphere 52:1727–1741

    Article  Google Scholar 

  22. Chang MM, McBroom MW, Scott BR (2004) Roofing as a source of nonpoint water pollution. J Environ Manage 73(4):307–315

    Article  Google Scholar 

  23. Jungnickel CF, Stock TB, Ranke J (2008) Risk assessment of biocides in roof paint. Part 1: experimental determination and modelling of biocide leaching from roof paint. Environ Sci Pollut Res Int 15(3):258–265

    Article  CAS  Google Scholar 

  24. Moilleron R, Gonzalez A, Chebb G, Thévenot DR (2002) Determination of aliphatic hydrocarbons in urban runoff samples from the “Le Marais” experimental catchment in Paris centre. Water Res 36:1275–1285. doi:10.1016/S0043-1354(01)00322-0

    Article  CAS  Google Scholar 

  25. Polkowska Ż, Górecki T, Namieśnik J (2002) Quality of roof runoff waters from an urban region (Gdańsk, Poland). Chemosphere 491:275–1283

    Google Scholar 

  26. Förster J (1999) Variability of roof runoff quality. Water Sci Technol 39(5):137–144

    Article  Google Scholar 

  27. Clarke SE, Steele KA, Spicher J, Siu CYS, Lalor MM, Pitt R, Kirby JT (2008) Roofing materials’ contributions to storm-water runoff pollution. J Irrig Drain Eng-ASCE 134(5):638–645

    Article  Google Scholar 

  28. Adeniyi IF, Olabanji IO (2005) The physico-chemical and bacteriological quality of rainwater collected over different roofing materials in Ile-Ife, southwestern Nigeria. Chem Ecol 21(3):149–166

    Article  CAS  Google Scholar 

  29. Zobrist J, Muller SR, Ammann A, Bucheli TD, Mottier VM, Ochs R, Schoenenberger JE, Boller M (2000) Quality of roof runoff for groundwater infiltration. Water Res 34:1455–1462

    Article  CAS  Google Scholar 

  30. Mendez CB, Klenzendorf JB, Afshar BR, Simmons MT, Barrett ME, Kinney KA, Kirisits MJ (2011) The effect of roofing material on the quality of harvested rainwater. Water Res 45(5):2049–2059

    Article  CAS  Google Scholar 

  31. Yaziz MI, Gunting H, Sapari N, Ghazali AW (1989) Variations in rainwater quality from roof catchments. Water Res 23(6):761–765

    Article  CAS  Google Scholar 

  32. Chang M, Crowley CM (1993) Preliminary observations on water quality of storm runoff from four selected residential roofs. J Am Water Resour Assoc 29(5):777–783

    Article  CAS  Google Scholar 

  33. Gikas GD, Tsihrintzis VA (2012) Assessment of water quality of first-flush roof runoff and harvested rainwater. J Hydrol 466:115–126. doi:10.1016/j.jhydrol.2012.08.020

    Google Scholar 

  34. Berndtsson JC, Bengtsson L, Jinno K (2009) Runoff water quality from intensive and extensive vegetated roofs. Ecol Eng 35:369–380

    Article  Google Scholar 

  35. van der Kooij D (1992) Assimilable organic carbon as an indicator of bacterial regrowth. J Am Water Works Assoc 84(2):57–65

    Google Scholar 

  36. Berndtsson JC, Emilsson T, Bengtsson L (2006) The influence of extensive vegetated roofs on runoff water quality. Sci Total Environ 355:48–63

    Article  CAS  Google Scholar 

  37. Harper GE, Limmer MA, Showalter WE, Burken JG (2015) Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri. Ecol Eng 78:127–133

    Article  Google Scholar 

  38. Gong K, Wu Q, Peng S, Zhao X, Wang X (2014) Research on the characteristics of the water quality of rainwater runoff from green roofs. Water Sci Technol 70(7):1205–1210

    Article  CAS  Google Scholar 

  39. Vijayaraghavan K, Raja FD (2015) Pilot-scale evaluation of green roofs with Sargassum biomass as an additive to improve runoff quality. Ecol Eng 75:70–78

    Article  Google Scholar 

  40. Beck DA, Johnson GR, Spolek CA (2011) Amending greenroof soil with biochar to affect runoff water quantity and quality. Selected papers from the conference Urban Environmental Pollution: Overcoming Obstacles to Sustainability and Quality of Life (UEP2010), 20–23 June 2010, Boston. Environ Pollut 159(8):2111–2118

    Google Scholar 

  41. Stratigea D, Makropoulos C (2015) Balancing water demand reduction and rainfall runoff minimisation: modelling green roofs, rainwater harvesting and greywater reuse systems. Water Sci Technol 15(2):248–255

    Google Scholar 

  42. Cupido A, Baetz B, Yiping G, Robertson A (2012) An evaluation of rainwater runoff quality from selected white roof membranes. Water Qual Res J Can 47(1):66–79

    Article  CAS  Google Scholar 

  43. Bucheli TD, Müller SR, Heberle S, Schwarzenbach RB (1998) Occurrence and behavior of pesticides in rainwater, roof runoff, and artificial stormwater infiltration. Environ Sci Technol 32(22):3457–3464

    Article  CAS  Google Scholar 

  44. Lee JY, Bak G, Han M (2012) Quality of roof-harvested rainwater–comparison of different roofing materials. Environ Pollut 162:422–429

    Article  CAS  Google Scholar 

  45. Athanasiadis K, Horn H, Helmreich B (2010) A field study on the first flush effect of copper roof runoff. Corros Sci 52:21–29

    Article  CAS  Google Scholar 

  46. He W, Odnevall Wallinder I, Leygraf C (2001) A laboratory study of copper and zinc runoff during first flush and steady-state conditions. Corros Sci 43:127–146

    Article  CAS  Google Scholar 

  47. Kus B, Kandasamy J, Vigneswaran S, Shon HK (2010) Analysis of first flush to improve the water quality in rainwater tanks. Water Sci Technol 61(2):421–428

    Article  CAS  Google Scholar 

  48. Stump B, McBroom M, Darville R (2012) Demographics, practices and water quality from domestic potable rainwater harvesting systems. J Water Supply Res Technol-AQUA 61(5):261–271

    Article  CAS  Google Scholar 

  49. Huston R, Chan YC, Chapman H, Gardner T, Shaw G (2012) Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia. Water Res 46(4):1121–1132

    Article  CAS  Google Scholar 

  50. O’Hogain S, McCarton L, McIntyre N, Pender J, Reid A (2012) Physicochemical and microbiological quality of harvested rainwater from an agricultural installation in Ireland. Water Environ J 26(1):1–6

    Article  Google Scholar 

  51. Despins C, Farahbakhsh K, Leidl C (2009) Assessment of rainwater quality from rainwater harvesting systems in Ontario, Canada. Aqua 58(2):117–134

    CAS  Google Scholar 

  52. Abbasi T, Abbasi SA (2011) Sources of pollution in rooftop rainwater harvesting systems and their control: critical review. Environ Sci Technol 41(23):2097–2167

    Article  Google Scholar 

  53. Magyar MI, Ladson AR, Mitchell VG, Diaper C (2011) The effect of rainwater tank design on sediment re-suspension and subsequent outlet water quality. Aust J Water Resour 15(1):71–84

    Google Scholar 

  54. Magyar MI, Ladson AR, Diaper C (2011) Sediment transport in rainwater tanks and implications for water quality. In: Manning AJ (ed) Sediment transport in aquatic environments. InTech-Open Access Publisher, p 344. http://www.intechopen.com/books/sediment-transport-in-aquatic-environments

  55. Ghimire SR, Johnston JM, Ingwersen WW, Hawkins TR (2014) Life cycle assessment of domestic and agricultural rainwater harvesting systems. Environ Sci Technol 48(7):4069–4077

    Article  CAS  Google Scholar 

  56. Campisano A, Modica C (2015) Appropriate resolution timescale to evaluate water saving and retention potential of rainwater harvesting for toilet flushing in single houses. J Hydroinform 17(3):331–346

    Article  Google Scholar 

  57. Silva CM, Sousa V, Carvalho NV (2015) Evaluation of rainwater harvesting in Portugal: application to single-family residences. Resour Conserv Recycl 94:21–34. doi:10.1016/j.resconrec.2014.11.004

    Article  Google Scholar 

  58. Sanches Fernandes LF, Terêncio DPS, Pacheco FAL (2015) Rainwater harvesting systems for low demanding applications. Sci Total Environ 529:91–100

    Article  CAS  Google Scholar 

  59. Ward S, Memon FA, Butler D (2012) Performance of a large building rainwater harvesting system. Water Res 46(16):5127–5134

    Article  CAS  Google Scholar 

  60. Marks JS, Martin B, Zadoroznyj M (2008) How Australians order acceptance of recycled water: national baseline data. J Sociol 44(1):83–99

    Article  Google Scholar 

  61. Ahmed W, Gardner T, Toze S (2011) Microbiological quality of roof-harvested rainwater and health risks: a review. J Environ Qual 40(1):13–21

    Article  CAS  Google Scholar 

  62. Ahmed W, Hodgers L, Sidhu JPS, Toze S (2012) Fecal indicators and zoonotic pathogens in household drinking water taps fed from rainwater tanks in Southeast Queensland, Australia. Appl Environ Microbiol 78(1):219–226

    Article  CAS  Google Scholar 

  63. Kaushik R, Balasubramanian R (2012) Assessment of bacterial pathogens in fresh rainwater and airborne particulate matter using real-time PCR. Atmos Environ 46:131–139

    Article  CAS  Google Scholar 

  64. Abdulla FA, Al-Shareef A (2009) Roof rainwater harvesting systems for household water supply in Jordan. Desalination 243:95–207. doi:10.1016/j.desal.2008.05.013

    Article  Google Scholar 

  65. Domènech L, Saurí D (2011) A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the metropolitan area of Barcelona (Spain): social experience, drinking water savings and economic costs. J Clean Prod 19(6):598–608

    Article  Google Scholar 

  66. Morrow A, Dunstan R, Coombes P (2010) Elemental composition at different points of the rainwater harvesting system. Sci Total Environ 408(20):4542–4548

    Article  CAS  Google Scholar 

  67. Sazakli E, Alexopoulos A, Leotsinidis M (2007) Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece. Water Res 41(9):2039–2047

    Article  CAS  Google Scholar 

  68. Spinks J, Phillips S, Robinson P, Van Buynder P (2006) Bushfires and tank rainwater quality: a cause for concern? J Water Health 4(1):21–28

    CAS  Google Scholar 

  69. Younos T, Bohdan R, Anderson E, Ramsey K, Cook N, Ross BB, Dillaha T (1998) Evaluation of rooftop rainfall collection-cistern storage systems in southwest Virginia. VWRRC SP3–1998, Virginia Tech, Blacksburg

    Google Scholar 

  70. Center for Science and Environment (CSE) (2011) Rainwater harvesting in urban areas. http://www.rainwaterharvesting.org/Urban/Urban.htm. Accessed 1 Nov 2015

  71. UPI (2015) Eiffel Tower fitted with wind turbines, solar panels, rainwater collectors. UPI News, 25 Feb 2015. http://www.upi.com/Top_News/World-News/2015/02/25/Eiffel-Tower-fitted-with-wind-turbines-solar-panels-rainwater-collectors/7471424873684/ph3/. Accessed 1 Nov 2015

  72. Miazga M (2012) Creatively green. PM Eng 18(4):16–18

    Google Scholar 

  73. Australian Bureau of Statistics (ABS) (2007) Environmental issues: people’s views and practices. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4602.0. Accessed 16 Nov 2015

  74. Hammerstrom J, Younos T (2014) Single-family home rainwater-harvesting system demonstration project for stormwater-runoff control and utility-water saving. The Cabell Brand Center special report no. 100-2014. www.cabellbrandcenter.org

  75. Quale JD (2012) Sustainable, affordable, pre-fab: the ecoMOD project. University of Virginia Press, Charlottesville

    Google Scholar 

  76. Morton J (2013) A path to net-zero water. Buildings 107(8):28

    Google Scholar 

  77. Capps K (2014) Bullitt center exceeds energy goals. Archit Rec 202(6):32

    Google Scholar 

  78. Herrmann T, Hasse K (1997) Ways to get water: rainwater utilization or long distance water supply. Water Sci Technol 36(8–9):313–318

    Article  CAS  Google Scholar 

  79. Gowland D, Younos T (2008) Feasibility of rainwater harvesting BMP for stormwater management. VWRRC SR38–2008, Virginia Tech, Blacksburg

    Google Scholar 

  80. van der Sterren M, Rahman A, Dennis GR (2012) Implications to stormwater management as a result of lot scale rainwater tank systems: a case study in Western Sydney, Australia. Water Sci Technol 65(8):1475–1482

    Article  Google Scholar 

  81. Steffen J, Jensen M, Pomeroy CA, Burian SJ (2013) Water supply and stormwater management benefits of residential rainwater harvesting in U.S. cities. J Am Water Resour Assoc 49(4):810–824

    Article  Google Scholar 

  82. DeBusk KM, Hunt WF, Wright JD (2013) Characterizing rainwater harvesting performance and demonstrating stormwater management benefits in the humid southeast USA. J Am Water Resour Assoc 49(6):1398–1411

    Article  Google Scholar 

  83. Damodaram C, Giacomoni MH, Khedun P, Holmes C, Ryan A, Saour W, Zechman EM (2010) Simulation of combined best management practices and low impact development for sustainable stormwater management. J Am Water Resour Assoc 46(5):907–918

    Article  Google Scholar 

  84. Petrucci G, Deroubaix JF, de Gouvello B, Deutsch JC, Bompard P, Tassina B (2012) Case study: rainwater harvesting to control stormwater runoff in suburban areas. Urban Water J 9(1):45–55

    Article  Google Scholar 

  85. DeBusk KM, Hunt WF (2014) Impact of rainwater harvesting systems on nutrient and sediment concentrations in roof runoff. Water Sci Technol 14(2):220–229

    CAS  Google Scholar 

  86. Khastagir A, Jayasuriya LNN (2010) Impacts of using rainwater tanks on stormwater harvesting and runoff quality. Water Sci Technol 62(2):324–329

    Article  CAS  Google Scholar 

  87. Wilson CE, Hunt WF, Winston RJ, Smith P (2014) Assessment of a rainwater harvesting system for pollutant mitigation at a commercial location in Raleigh, NC, USA. Water Sci Technol 14(2):283–290

    CAS  Google Scholar 

  88. Grady C, Younos T (2010) Water use and sustainability in La Altagracia, Dominican Republic. VWRRC SR49–2010, Virginia Tech, Blacksburg

    Google Scholar 

  89. Gleick PH, Haasz D, Henges-Jack C, Srinivasan V, Wolff G, Cushing KK, Mann A (2003) Waste not, want not: the potential for urban water conservation in California. Pacific Institute for Studies in Development, Environment, and Security, Oakland

    Google Scholar 

  90. Liu W, Chen W, Peng C, Wu L, Qian Y (2015) A water balance approach to assess rainwater availability potential in urban areas: the case of Beijing, China. Water Sci Technol 15(3):490–498

    CAS  Google Scholar 

  91. Evan H, Rahman A (2014) Rainwater utilization from roof catchments in arid regions: a case study for Australia. J Arid Environ 111:35–41

    Article  Google Scholar 

  92. Farrenya R, Rieradevall J, Barbassad AP, Teixeirad B, Gabarell X (2013) Case study: indicators for commercial urban water management: the cases of retail parks in Spain and Brazil. Urban Water J 10(4):281–290

    Article  Google Scholar 

  93. Jiang Z, Li X, Ma Y (2013) Water and energy conservation of rainwater harvesting system in the Loess Plateau of China. J Integr Agric 12(8):1389–1395

    Article  Google Scholar 

  94. Han MY, Mun JS (2011) Operational data of the Star City rainwater harvesting system and its role as a climate change adaptation and a social influence. Water Sci Technol 63(12):2796–2801

    Article  CAS  Google Scholar 

  95. Roebuck RM, Oltean-Dumbrava C, Tait S (2011) Whole life cost performance of domestic rainwater harvesting systems in the United Kingdom. Water Environ J 25:355–365

    Article  Google Scholar 

  96. Sample DJ, Liu J (2014) Optimizing rainwater harvesting systems for the dual purposes of water supply and runoff capture. J Clean Prod 75:174–194

    Article  Google Scholar 

  97. Zhang X, Hu M (2014) Effectiveness of rainwater harvesting in runoff volume reduction in a planned industrial park, China. Water Resour Manag 28:671–682

    Article  Google Scholar 

  98. Gurung TR, Sharma A (2014) Communal rainwater tank systems design and economies of scale. J Clean Prod 67:26–36

    Article  Google Scholar 

  99. Morales-Pinzon T, Rieradevall J, Gasol CM, Gabarell X (2015) Modelling for economic cost and environmental analysis of rainwater harvesting systems. J Clean Prod 87:613–626

    Article  Google Scholar 

  100. Morales-Pinzon T, Lurena R, Gabarrell X, Gasol CM, Rieradevall J (2014) Financial and environmental modelling of water hardness – implications for utilising harvested rainwater in washing machines. Sci Total Environ 470–471:1257–1271

    Article  Google Scholar 

  101. Rahman A, Keane J, Imteaz MA (2012) Rainwater harvesting in Greater Sydney: water savings, reliability and economic benefits. Resour Conserv Recycl 61:16–21

    Article  Google Scholar 

  102. Chamberlain JF, Sabatini DA (2014) Water-supply options in arsenic-affected regions in Cambodia: targeting the bottom income quintiles. Sci Total Environ 488–489:521–531

    Article  Google Scholar 

  103. Devkota J, Schlachter H, Apul D (2015) Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J Clean Prod 95:311–321

    Article  Google Scholar 

  104. Devkota J, Schlachter H, Anand C, Phillips R, Apul D (2013) Development and application of EEAST: a life cycle based model for use of harvested rainwater and composting toilets in buildings. J Environ Manag 130:397–404

    Article  CAS  Google Scholar 

  105. Wang R, Zimmerman JB (2015) Economic and environmental assessment of office building rainwater harvesting systems in various U.S. cities. Environ Sci Technol 49(3):1768–1778

    Article  CAS  Google Scholar 

  106. Farrenya R, Gabarrell X, Rieradevall J (2011) Cost-efficiency of rainwater harvesting strategies in dense Mediterranean neighborhoods. Resour Conserv Recycl 55:686–694

    Article  Google Scholar 

  107. Anand C, Apul DS (2011) Economic and environmental analysis of standard, high efficiency, rainwater flushed, and composting toilets. J Environ Manag 92(3):419–428

    Article  CAS  Google Scholar 

  108. Godskesen B, Hauschild M, Rygaard M, Zambrano K, Albrechtsen H-J (2013) Life-cycle and freshwater withdrawal impact assessment of water supply technologies. Water Res 47(7):2363–2374

    Article  CAS  Google Scholar 

  109. Fewtrell L, Kay D (2007) Quantitative microbial risk assessment with respect to Campylobacter spp. in toilets flushed with harvested rainwater. Water Environ J 21(4):275–280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Sojka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sojka, S., Younos, T., Crawford, D. (2016). Modern Urban Rainwater Harvesting Systems: Design, Case Studies, and Impacts. In: Younos, T., Parece, T. (eds) Sustainable Water Management in Urban Environments. The Handbook of Environmental Chemistry, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-29337-0_7

Download citation

Publish with us

Policies and ethics