Photorefractives for Holographic Interferometry and Nondestructive Testing
- 616 Downloads
Abstract
Thanks to its high sensitivity to displacement, holography is very well suited for metrology. In the case of holographic interferometry (HI), interference occurs between the object wavefront and a wavefront reconstructed by a hologram allowing a comparison between different objects, or different states of the same object. This chapter first discusses the importance of HI compared to other techniques such as electronic or computer based interferometry, then the author is developing various methodologies for holographic metrology, including real time, double exposure, and time averaged HI. Material considerations are covered and the specific case of photorefractive polymer and crystals are analyzed. Several experiments of nondestructive testing on industrial systems are discussed with measurement configurations relevant for thermal analysis, vibration, defect detection, and even historic artifact investigation.
Keywords
Holographic Interferometry Object Wave Digital Holography Electronic Speckle Pattern Interferometry Hologram RecordingReferences
- 1.Kreis, T.: Handbook of Holographic Interferometry—Optical and Digital Methods. Wiley-VCH, Weinheim (2005)Google Scholar
- 2.Vest, C.M.: Holographic Interferometry. Wiley, New York (1979)Google Scholar
- 3.Picart, P., Gross, M., Marquet, P.: Basic fundamentals of digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 1–66. Wiley/ISTE, London (2015)Google Scholar
- 4.Jones, R., Wykes, C.: Holographic and Speckle Interferometry, 2nd edn. Cambridge University Press, Cambridge (1989)CrossRefGoogle Scholar
- 5.Georges, M.: Long-wave infrared digital holography. In: Picart, P. (ed.) New Techniques in Digital Holography, pp. 219–254. Wiley/ISTE, London (2015)Google Scholar
- 6.Picart, P.: Holography: non-contact and optical non-destructive testing applications, In: Optics 4 Engineers, Online Courses. http://www.optique-ingenieur.org/en/courses/OPI_ang_M02_C11/co/OPI_ang_M02_C11_web.html (2009). Accessed 30 Mar 2009
- 7.Nakadate, S., Saito, H., Nakajima, T.: Vibration measurement using phase-shifting stroboscopic holographic interferometry. Opt. Acta 33(10), 1295–1309 (1986)CrossRefGoogle Scholar
- 8.Robinson, D.W., Reid, G.T.: Interferogram Analysis: Digital Fringe Pattern Measurement Techniques. Institute of Physics, London (1993)Google Scholar
- 9.Frejlich, J.: Photorefractive Materials. Fundamental Concepts, Holographic Recording and Materials Characterization. Wiley, Hoboken (2007)Google Scholar
- 10.Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)CrossRefGoogle Scholar
- 11.Lemaire, P., Georges, M.: Dynamic holographic interferometry: devices and applications. In: Günther, P., Huignard, J.-P. (eds.) Photorefractive Materials and Their Applications 3. Applications, pp. 223–251. Springer, New York (2007)Google Scholar
- 12.Petrov, M., Stepanov, S., Khomenko, A.: Photorefractive crystals in coherent optical systems. In: Springer Series in Optical Sciences, vol. 59. Springer, Berlin (1991)Google Scholar
- 13.Delaye, P., Jonathan, J.M., Pauliat, G., Roosen, G.: Photorefractive materials: specifications relevant to applications. Pure Appl. Opt. 5, 541–559 (1996)CrossRefGoogle Scholar
- 14.Hafiz, A., Magnusson, R., Bagby, J., Wilson, D., Black, T.: Visualization of aerodynamic flow using photorefractive crystals. Appl. Opt. 28(8), 1521–1524 (1989)CrossRefGoogle Scholar
- 15.Wang, X., Magnusson, R., Haji-Sheikh, A.: Real-time interferometry with photorefractive reference holograms. Appl. Opt. 32(11), 1983–1986 (1993)CrossRefGoogle Scholar
- 16.Mary, J., Bernard, Y., Lefaucheux, F.: Development of a space interferometer with a LiNbO3:Fe crystal as holographic support. J. Opt. Soc. Am. B 7(12), 2356–2361 (1990)CrossRefGoogle Scholar
- 17.Marrakchi, A., Huignard, J.P., Günter, P.: Diffraction efficiency and energy transfer in two-wave mixing experiments with Bi12SiO20 crystals. Appl. Phys. 24, 131–138 (1991)CrossRefGoogle Scholar
- 18.Labrunie, L., Pauliat, G., Launay, J.C., Leidenbach, S., Roosen, G.: Real-time double exposure holographic phase shifting interferometer using a photorefractive crystal. Opt. Commun. 140, 119–127 (1997)CrossRefGoogle Scholar
- 19.Kamshilin, A., Petrov, M.: Continuous reconstruction of holographic interferograms through anisotropic diffraction in photorefractive crystals. Opt. Commun. 53, 23–26 (1985)CrossRefGoogle Scholar
- 20.Troth, R., Dainty, J.C.: Holographic interferometry using anisotropic self-diffraction in Bi12SiO20. Opt. Lett. 16, 53–55 (1991)CrossRefGoogle Scholar
- 21.Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals for quantitative phase measurement on large objects. Proc. SPIE 2652, 248–257 (1996)CrossRefGoogle Scholar
- 22.Georges, M., Lemaire, P.: Phase-shifting real time interferometry that uses bismuth silicon oxide crystals. Appl. Opt. 34(32), 7497–7506 (1995). http://dx.doi.org/10.1364/AO.34.007497 CrossRefGoogle Scholar
- 23.Huignard, J.P., Herriau, J.P.: Real-time double exposure interferometry with Bi12SiO20 crystals in transverse electrooptic configuration. Appl. Opt. 16(7), 1807–1809 (1977)CrossRefGoogle Scholar
- 24.Huignard, J.P., Herriau, J.P., Valentin, T.: Time average holographic interferometry with photoconductive electrooptic Bi12SiO20 crystals. Appl. Opt. 16(11), 2796–2798 (1977)CrossRefGoogle Scholar
- 25.Marrakchi, A., Huignard, J.P., Herriau, J.P.: Application of phase conjugation in Bi12SiO20 crystals to mode pattern visualization of diffuse vibrating structures. Opt. Commun. 34, 15–18 (1980)CrossRefGoogle Scholar
- 26.Huignard, J.P., Marrakchi, A.: Two-wave mixing and energy transfer in Bi12SiO20 crystals: application to image amplification and vibration analysis. Opt. Lett. 6, 622–624 (1981)CrossRefGoogle Scholar
- 27.Kamshilin, A., Mokrushina, E., Petrov, M.: Adaptative holographic interferometers operating through self-diffraction of recording beams in photorefractive crystals. Opt. Eng. 28(6), 580–585 (1989)CrossRefGoogle Scholar
- 28.Dirksen, D., von Bally, G.: Holographic double exposure interferometry in near real time with photorefractive crystals. J. Opt. Soc. Am. B 11(9), 1858–1863 (1994)CrossRefGoogle Scholar
- 29.Rickermann, F., Riehemann, S., von Bally, G.: Utilization of photorefractive crystals for holographic double exposure interferometry with nanosecond laser pulses. Opt. Commun. 155, 91–98 (1998)CrossRefGoogle Scholar
- 30.Dirksen, D., Matthes, F., Riehemann, S., von Bally, G.: Phase shifting holographic double exposure interferometry with fast photorefractive crystals. Opt. Commun. 134, 310–316 (1997)CrossRefGoogle Scholar
- 31.Pouet, B., Krishnaswamy, S.: Dynamic holographic interferometry by photorefractive crystals for quantitative deformation measurements. Appl. Opt. 35(5), 787–794 (1996)CrossRefGoogle Scholar
- 32.Labrunie, L., Pauliat, G., Roosen, G., Launay, J.C.: Simultaneous acquisition of π/2 phase-stepped interferograms with a photorefractive Bi12GeO20 crystal: application to real-time double-pulse holography. Opt. Lett. 20(15), 1652–1654 (1995)CrossRefGoogle Scholar
- 33.Neumann, D.B., Rose, H.W.: Improvement of recorded holographic fringes by feedback control. Appl. Opt. 6(6), 1097–1104 (1967)CrossRefGoogle Scholar
- 34.Kamshilin, A., Frejlich, J., Cescato, L.: Photorefractive crystals for the stabilization of the holographic setup. Appl. Opt. 25(14), 2375–2381 (1986)CrossRefGoogle Scholar
- 35.Dos Santos, P.A., Cescato, L., Frejlich, J.: Interference-term real-time measurement for self-stabilized two-wave mixing in photorefractive crystals. Opt. Lett. 13(11), 1014–1016 (1988)CrossRefGoogle Scholar
- 36.Freschi, A., Frejlich, J.: Adjustable phase control in stabilized interferometry. Opt. Lett. 20(6), 635–637 (1995)CrossRefGoogle Scholar
- 37.Freschi, A., Barbosa, E., Frejlich, J.: Phase-compensated holographic recording based on anisotropic photorefractive diffraction. Opt. Lett. 20(19), 2027–2029 (1995)CrossRefGoogle Scholar
- 38.Hampp, N., Bräuchle, C., Oesterhelt, D.: Bacterioshodopsin wildtype and variants aspartate-96 asparagine as reversible holographic media. Biophys. J. 58, 83–93 (1990)CrossRefGoogle Scholar
- 39.Renner, T., Hampp, N.: Bacteriorhodopsin-films for dynamic time average interferometry. Opt. Commun. 96, 142–149 (1993)CrossRefGoogle Scholar
- 40.Barnhart, D., Koek, W., Juchem, T., Hampp, N., Coupland, J., Halliwell, N.: Bacterioshodopsin as a high-resolution, high-capacity buffer for digital holographic measurements. Meas. Sci. Technol. 15, 639–646 (2004)CrossRefGoogle Scholar
- 41.Hampp, N., Juchem, T.: System for holographic interferometry based on bacteriorhodopsin-films. Proc SPIE 4597, 7–15 (2001)CrossRefGoogle Scholar
- 42.Volodin, B., Sandalphon, Meerholz, K., Kippelen, B., Kukhtarev, N., Peyghambarian, N.: Highly efficient photorefractive polymers for dynamic holography. Opt. Eng. 34(8), 2213–2223 (1995)CrossRefGoogle Scholar
- 43.Georges, M., Lemaire, P.: Holographic interferometry using photorefractive crystals: recent advances and applications. Proc. SPIE 2782, 476–485 (1996)CrossRefGoogle Scholar
- 44.Georges, M., Lemaire, P.: Real-time holographic interferometry using sillenite photorefractive crystals. Study and optimization of a transportable set-up for quantified phase measurements on large objects. Appl. Phys. B 68, 1073–1083 (1999)CrossRefGoogle Scholar
- 45.Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera using photorefractive crystals. Applications in various metrological problems. Appl. Phys. B 72, 761–765 (2001). doi: 10.1007/s003400100582 CrossRefGoogle Scholar
- 46.Georges, M., Scauflaire, V., Lemaire, P.: Compact and portable holographic camera based on photorefractive crystals and application in interferometry. Opt. Mater. 18, 49–52 (2001)CrossRefGoogle Scholar
- 47.Georges, M., Lemaire, P.: Real-time stroboscopic holographic interferometry using sillenite crystals for the quantitative analysis of vibrations. Opt. Commun. 145, 249–257 (1998)CrossRefGoogle Scholar
- 48.Georges, M., Thizy, C., Scauflaire, V., Ryhon, S., Pauliat, G., Lemaire, P., Roosen, G.: Holographic interferometry with photorefractive crystals: review of applications and advances techniques. Proc. SPIE 4933, 250–255 (2003)CrossRefGoogle Scholar
- 49.Thizy, C., Georges, M., Lemaire, P., Stockman, Y., Doyle, D.: Phase control strategies for stabilization of photorefractive holographic interferometer. Proc. SPIE 6341, 63411O (2006)CrossRefGoogle Scholar
- 50.Thizy, C., Georges, M., Doulgeridis, M., Kouloumpi, E., Green, T., Hackney, S., Tornari, V.: Role of dynamic holography with photorefractive crystals in a multifunctional sensor for the detection of signature features in movable cultural heritage. Proc. SPIE 6618, 661828 (2007)Google Scholar
- 51.Georges, M., Thizy, C., Tiberghien, J., Lemaire, P.: Adaptation of a photorefractive holographic interferometer for analysis of centimetric to micrometric objects. Proc. SPIE 6341, 634139 (2006)CrossRefGoogle Scholar
- 52.Georges, M., Thizy, C.: Photorefractive holographic camera for monitoring deformation of MEMS. J. Micro/Nanolithogr. MEMS MOEMS 14(4), 041301 (2015)CrossRefGoogle Scholar
- 53.Thizy, C., Eliot, F., Ballhause, D., Olympio, K.R., Kluge, R., Shannon, A., Laduree, G., Logut, D., Georges, M.: Holographic interferometry based on photorefractive crystal to measure 3D thermo-elastic distortion of composite structures and comparison with finite element models. Proc. SPIE 8788, 878807 (2013)CrossRefGoogle Scholar
- 54.Lynn, B., Blanche, P.A., Peyghambarian, N.: Photorefractive polymers for holography. J. Polym. Sci. B Polym. Phys. 52, 193–231 (2014)CrossRefGoogle Scholar
- 55.Blanche, P.A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010)CrossRefGoogle Scholar
- 56.Tsutsuni, N., Kinashi, K., Nonomura, A.: Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite. Materials 5, 1477–1486 (2012)CrossRefGoogle Scholar
- 57.Tsujimura, S., Kinashi, K., Sakai, W., Tsutsumi, N.: High-speed photorefractive response capability in Triphenylamine polymer-based composites. Appl. Phys. Express 5, 064101 (2012)CrossRefGoogle Scholar