Skip to main content

Wave Mixing in Photorefractive Polymers: Modeling and Selected Applications

  • Chapter
  • First Online:
Photorefractive Organic Materials and Applications

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 240))

  • 741 Accesses

Abstract

This chapter summarizes our work in the area of photorefractive polymers, a material which can be engineered to specifications for potential applications to holography, 3D displays, and energy exchange through two-wave mixing. In usual photorefractive polymers, holes are the primary mobile carriers which give rise to the electrostatic field and the induced refractive index. After a brief introduction to the material equations for modeling the photorefractive effect in the steady state, the phase shift between the intensity grating and the induced refractive index grating is discussed in detail. The material equations, in conjunction with the optical propagation equation, is next used to describe two-wave mixing leading to energy exchange in the material, taking into account the effect of beam fanning. Generation of higher non-Bragg orders is also considered, particularly in light of its potential applications to image processing. Examples of image processing such as edge enhancement, image correlation, and adaptive filtering are discussed. Finally, the transient response of these materials is considered, and it is shown that in addition to holes, there may be contributions from electrons over a range of applied bias fields, which can compromise the two wave coupling gain of the polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yeh, P.: Introduction to Photorefractive Optics. Wiley, New York (1993)

    Google Scholar 

  2. Gunter, P., Huignard, J.P. (eds.): Photorefractive Materials and Their Applications, I and II. Topics in Applied Physics, vols. 61/62. Springer, New York (1988)

    Google Scholar 

  3. Yu, F.T.S., Yin, S.: Photorefractive Optics: Materials, Properties and Applications. Academic, New York (1999)

    Google Scholar 

  4. Solymar, L., Webb, D.: The Physics and Applications of Photorefractive Materials. Oxford University Press, Oxford (1996)

    Google Scholar 

  5. Gunter, P., Huignard, J.: Photorefractive Materials and Their Applications, I, II and III. Springer, Berlin (1989, 2010, 2011)

    Google Scholar 

  6. Frejlich, J.: Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization. Wiley, New York (2010)

    Google Scholar 

  7. Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 (1991)

    Article  Google Scholar 

  8. Moerner, W., Silence, S., Hache, F., Bjorklund, G.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11, 320–330 (1994)

    Article  Google Scholar 

  9. Cui, Y.P., Zhang, Y., Prasad, P.N., Schildkraut, J.S., Williams, D.J.: Photorefractive effect in a new organic system of doped nonlinear polymer. Appl. Phys. Lett. 61, 2132–2134 (1992)

    Article  Google Scholar 

  10. Kippelen, B., Tamura, K., Peyghambarian, N., Padias, A.B., Hall, H.K.: Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group. J. Appl. Phys. 74, 3617–3619 (1993)

    Article  Google Scholar 

  11. Volodin, B.L., Kippelen, B., Meerholz, K., Peyghambarian, N., Kukhtarev, N.V., Caulfield, H.J.: Study of non-Bragg orders in dynamic self-diffraction in a photorefractive polymer. J. Opt. Soc. Am. B 13, 2261–2267 (1996)

    Article  Google Scholar 

  12. Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christensen, C., Lin, W., Gu, T., Flores, D., Wang, P., Hseih, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R., Yamamoto, M., Peyghambarian, N.: Holographic 3d telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010)

    Article  Google Scholar 

  13. Doncker, M., Silence, S., Walsh, F., Burland, D., Moerner, W., Tweig, R.: Net two-beam coupling gain in a polymeric photorefractive material. Opt. Lett. 18, 1044–1046 (1993)

    Article  Google Scholar 

  14. Kukhtarev, N.V., Markov, V.B., Odoulov, S.G., Soskin, M.S., Vinetski, V.L.: Holographic storage in electrooptic crystals. Ferroelectrics 22, 949–964 (1979)

    Article  Google Scholar 

  15. delRe, E., Ciattoni, A., Crosignani, B., Tamburrini, M.: Approach to space-charge field description in photorefractive crystal. J. Opt. Soc. Am. B 15, 1469–1475 (1998)

    Article  Google Scholar 

  16. Matsushita, K., Banerjee, P.P., Ozaki, S., Miyazaki, D.: Multiwave mixing in a high gain photorefractive polymer. Opt. Lett. 24, 593–596 (1999)

    Article  Google Scholar 

  17. Banerjee, P.P., Gad, E., Hudson, T., McMillen, D., Abdeldayem, H., Frazier, D., Matsushita, K.: Edge enhancement an edge enhanced correlation with photorefractive polymers. Appl. Opt. 39, 5337–5346 (2000)

    Article  Google Scholar 

  18. Banerjee, P.P., Cook, G., Evans, D.R., Wofford, J., Blanche, P.A., Thomas, J., Peyghambarian, N.: Transmission, reflection and absorption gratings in photorefractive polymers. Proc. SPIE 7420, 74200H (2009)

    Article  Google Scholar 

  19. Meerholtz, K., Kippelen, B., Peyghambarian, N.: Noncrystalline organic photorefractive materials: chemistry, physics and applications. In: Wise, D.L., Wnek, G.E., Trantolo, D.J., Cooper, T.M., Gresser, J.D. (eds.) Photonic Polymer Systems. Dekker, Basel (1998)

    Google Scholar 

  20. Au, L., Solymar, L.: Higher diffraction orders in photorefractive materials. IEEE J. Quantum Electron. 24, 162–168 (1988)

    Article  Google Scholar 

  21. Feinberg, J.: A symmetric self-defocusing of an optical beam for photorefractive effect. J. Opt. Soc. Am. 72, 46–51 (1982)

    Article  Google Scholar 

  22. Cronin-Golomb, M., Yariv, A.: Optical limiters using photorefractive nonlinearities. J. Appl. Phys. 57, 4906–4910 (1985)

    Article  Google Scholar 

  23. Vazquez, R., Vachss, F., Neurgaonkar, R., Ewbank, M.: Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal. J. Opt. Soc. Am. B 8, 1932–1941 (1992)

    Article  Google Scholar 

  24. Grunnet-Jepsen, A., Thompson, C.L., Tweig, R.J., Moerner, W.E.: Amplified scattering in a high-gain photorefractive polymer. J. Opt. Soc. Am. B 15, 901–904 (1998)

    Article  Google Scholar 

  25. Meerholz, K., Bittner, R., De Nardin, Y.: Field asymmetry of the dynamic gain coefficient in organic photorefractive devices. Opt. Commun. 150, 205–209 (1998)

    Article  Google Scholar 

  26. Gad, E.: Wave mixing and image processing using photorefractive polymers. Ph.D. Dissertation, University of Alabama in Huntsville (2000)

    Google Scholar 

  27. Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prenctice-Hall, New York (2007)

    Google Scholar 

  28. Banerjee, P.P.: Organic thin-film photorefractive materials. In: Weighhofer, W., Lakhtakia, A. (eds.) Introduction to Complex Mediums for Optics and Electromagnetics. SPIE Press, Bellingham (2003)

    Google Scholar 

  29. Goodman, J.: Introduction to Fourier Optics, 3rd edn. Roberts, Greenwood Village (2005)

    Google Scholar 

  30. Poon, T.-C., Banerjee, P.P.: Contemporary Optical Image Processing with MATLAB. Elsevier, Oxford (2001)

    Google Scholar 

  31. VanderLugt, A.: Signal detection by complex spatial filtering. IEEE Trans. Inform. Theory 10, 139–145 (1964)

    Article  Google Scholar 

  32. Weaver, C.S., Goodman, J.W.: A technique for optically convolving two functions. Appl. Opt. 5, 1248–1249 (1966)

    Article  Google Scholar 

  33. Yu, F.T.S., Lu, X.J.: A real-time programmable joint transform correlator. Opt. Commun. 52, 10–16 (1984)

    Article  Google Scholar 

  34. Pepper, D.M., AuYeung, J., Fekete, D., Yariv, A.: Spatial convolution and correlation of optical fields via degenerate four-wave mixing. Opt. Lett. 3, 7–9 (1978)

    Article  Google Scholar 

  35. Alam, M.S., Khoury, J.S.: Fringe-adjusted incoherent erasure joint transform correlator. Opt. Eng. 37, 75–82 (1998)

    Article  Google Scholar 

  36. Slezak, D., Pal, S., Kang, B.-H., Gu, J., Kuroda, H., Kim, T.-H.: Signal Processing, Image Processing and Pattern Recognition. Springer, Berlin (2009)

    Book  Google Scholar 

  37. Khoury, J., Cronin-Golomb, M., Gianino, P., Woods, C.: Photorefractive two-beam-coupling nonlinear joint-transform correlator. J. Opt. Soc. Am. B 11, 2167–2174 (1994)

    Article  Google Scholar 

  38. Asimellis, G., Khoury, J., Woods, C.: Effects of saturation on the nonlinear incoherent-erasure joint transform correlator. J. Opt. Soc. Am. A 13, 1345–1356 (1996)

    Article  Google Scholar 

  39. Khoury, J., Gianino, P.D., Woods, C.L.: Engineering aspects of the two-beam coupling correlator. Opt. Eng. 39, 1177–1183 (2000)

    Article  Google Scholar 

  40. Khoury, J., Donoghue, J., Haji-Saeed, B., Woods, C.L., Kierstead, J., Peyghambarian, N., Yamamoto, M.: Characterization of optical correlation via dynamic range compression using organic photorefractive materials. Proc. SPIE 8398, 83980L-1–83980L-16 (2012)

    Google Scholar 

  41. Kumar, B.V.K.V., Hassebrook, L.: Performance measures for correlation filters. Appl. Opt. 29, 2997–3006 (1990)

    Article  Google Scholar 

  42. Khoury, J., Alam, M.S., Banerjee, P.P., Nehmetallah, G.T., Durrant, W.M., Martin, D.M., Donoghue, J.: Performance comparison of photorefractive two-beam coupling correlator with optimal filter based correlators. Invited Paper. Proc. SPIE 9094, 909405-1–909405-13 (2014)

    Google Scholar 

  43. Khoury, J., Donoghue, J., Haji-Saeed, B., Woods, C.L., Kierstead, J., Peyghambarian, N., Yamamoto, M.: Adaptive filtering with organic photorefractive materials via four-wave mixing. Proc. SPIE 8398, 83980F-1–83980F-12 (2012)

    Google Scholar 

  44. Banerjee, P., Buller, S., Leibig, C., Cook, G., Evans, D., Blanche, P., Thomas, J., Peyghambarian, N.: Time dynamics of self-pumped reflection gratings in photorefractive polymers. J. Appl. Phys. 111, 013108 (2012)

    Article  Google Scholar 

  45. Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.-A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21, 30392–30400 (2013)

    Article  Google Scholar 

  46. Evans, D.R., Basun, S.A., Saleh, M.A., Allen, A.S., Pottenger, T.P., Cook, G., Bunning, T.J., Guha, S.: Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate. IEEE J. Quantum Electron. 38, 1661–1665 (2002)

    Article  Google Scholar 

  47. Moerner, W.E., Silence, S.M.: Polymeric photorefractive materials. Chem. Rev. 94, 127–155 (1994)

    Article  Google Scholar 

  48. Christenson, C.W., Thomas, J., Blanche, P.-A., Voorakaranam, R., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Grating dynamics in a photorefractive polymer with Alq3 electron traps. Opt. Express 18, 9358–9365 (2010)

    Article  Google Scholar 

  49. Wang, L., Ng, M.-K., Yu, L.: Photorefraction and complementary grating competition in bipolar transport molecular material. Phys. Rev. B 62, 4973–4984 (2000)

    Article  Google Scholar 

  50. Zhang, Z., Ding, Y., Eichler, H., Fu, P., Shen, D., Ma, X., Chen, J.: Electron-hole competition in photorefractive Rb doped KNbO3. Opt. Commun. 142, 279–282 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha P. Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Banerjee, P.P., Evans, D.R., Liebig, C.M. (2016). Wave Mixing in Photorefractive Polymers: Modeling and Selected Applications. In: Blanche, PA. (eds) Photorefractive Organic Materials and Applications. Springer Series in Materials Science, vol 240. Springer, Cham. https://doi.org/10.1007/978-3-319-29334-9_7

Download citation

Publish with us

Policies and ethics