Advertisement

Wave Mixing in Photorefractive Polymers: Modeling and Selected Applications

  • Partha P. BanerjeeEmail author
  • Dean R. Evans
  • Carl M. Liebig
Chapter
  • 608 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)

Abstract

This chapter summarizes our work in the area of photorefractive polymers, a material which can be engineered to specifications for potential applications to holography, 3D displays, and energy exchange through two-wave mixing. In usual photorefractive polymers, holes are the primary mobile carriers which give rise to the electrostatic field and the induced refractive index. After a brief introduction to the material equations for modeling the photorefractive effect in the steady state, the phase shift between the intensity grating and the induced refractive index grating is discussed in detail. The material equations, in conjunction with the optical propagation equation, is next used to describe two-wave mixing leading to energy exchange in the material, taking into account the effect of beam fanning. Generation of higher non-Bragg orders is also considered, particularly in light of its potential applications to image processing. Examples of image processing such as edge enhancement, image correlation, and adaptive filtering are discussed. Finally, the transient response of these materials is considered, and it is shown that in addition to holes, there may be contributions from electrons over a range of applied bias fields, which can compromise the two wave coupling gain of the polymer.

Keywords

Electrostatic Field Bias Field Spatial Light Modulator Incident Intensity Edge Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yeh, P.: Introduction to Photorefractive Optics. Wiley, New York (1993)Google Scholar
  2. 2.
    Gunter, P., Huignard, J.P. (eds.): Photorefractive Materials and Their Applications, I and II. Topics in Applied Physics, vols. 61/62. Springer, New York (1988)Google Scholar
  3. 3.
    Yu, F.T.S., Yin, S.: Photorefractive Optics: Materials, Properties and Applications. Academic, New York (1999)Google Scholar
  4. 4.
    Solymar, L., Webb, D.: The Physics and Applications of Photorefractive Materials. Oxford University Press, Oxford (1996)Google Scholar
  5. 5.
    Gunter, P., Huignard, J.: Photorefractive Materials and Their Applications, I, II and III. Springer, Berlin (1989, 2010, 2011)Google Scholar
  6. 6.
    Frejlich, J.: Photorefractive Materials: Fundamental Concepts, Holographic Recording and Materials Characterization. Wiley, New York (2010)Google Scholar
  7. 7.
    Ducharme, S., Scott, J.C., Twieg, R.J., Moerner, W.E.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66, 1846–1849 (1991)CrossRefGoogle Scholar
  8. 8.
    Moerner, W., Silence, S., Hache, F., Bjorklund, G.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11, 320–330 (1994)CrossRefGoogle Scholar
  9. 9.
    Cui, Y.P., Zhang, Y., Prasad, P.N., Schildkraut, J.S., Williams, D.J.: Photorefractive effect in a new organic system of doped nonlinear polymer. Appl. Phys. Lett. 61, 2132–2134 (1992)CrossRefGoogle Scholar
  10. 10.
    Kippelen, B., Tamura, K., Peyghambarian, N., Padias, A.B., Hall, H.K.: Photorefractive effect in a poled polymer containing the tricyanovinylcarbazole group. J. Appl. Phys. 74, 3617–3619 (1993)CrossRefGoogle Scholar
  11. 11.
    Volodin, B.L., Kippelen, B., Meerholz, K., Peyghambarian, N., Kukhtarev, N.V., Caulfield, H.J.: Study of non-Bragg orders in dynamic self-diffraction in a photorefractive polymer. J. Opt. Soc. Am. B 13, 2261–2267 (1996)CrossRefGoogle Scholar
  12. 12.
    Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christensen, C., Lin, W., Gu, T., Flores, D., Wang, P., Hseih, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R., Yamamoto, M., Peyghambarian, N.: Holographic 3d telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010)CrossRefGoogle Scholar
  13. 13.
    Doncker, M., Silence, S., Walsh, F., Burland, D., Moerner, W., Tweig, R.: Net two-beam coupling gain in a polymeric photorefractive material. Opt. Lett. 18, 1044–1046 (1993)CrossRefGoogle Scholar
  14. 14.
    Kukhtarev, N.V., Markov, V.B., Odoulov, S.G., Soskin, M.S., Vinetski, V.L.: Holographic storage in electrooptic crystals. Ferroelectrics 22, 949–964 (1979)CrossRefGoogle Scholar
  15. 15.
    delRe, E., Ciattoni, A., Crosignani, B., Tamburrini, M.: Approach to space-charge field description in photorefractive crystal. J. Opt. Soc. Am. B 15, 1469–1475 (1998)CrossRefGoogle Scholar
  16. 16.
    Matsushita, K., Banerjee, P.P., Ozaki, S., Miyazaki, D.: Multiwave mixing in a high gain photorefractive polymer. Opt. Lett. 24, 593–596 (1999)CrossRefGoogle Scholar
  17. 17.
    Banerjee, P.P., Gad, E., Hudson, T., McMillen, D., Abdeldayem, H., Frazier, D., Matsushita, K.: Edge enhancement an edge enhanced correlation with photorefractive polymers. Appl. Opt. 39, 5337–5346 (2000)CrossRefGoogle Scholar
  18. 18.
    Banerjee, P.P., Cook, G., Evans, D.R., Wofford, J., Blanche, P.A., Thomas, J., Peyghambarian, N.: Transmission, reflection and absorption gratings in photorefractive polymers. Proc. SPIE 7420, 74200H (2009)CrossRefGoogle Scholar
  19. 19.
    Meerholtz, K., Kippelen, B., Peyghambarian, N.: Noncrystalline organic photorefractive materials: chemistry, physics and applications. In: Wise, D.L., Wnek, G.E., Trantolo, D.J., Cooper, T.M., Gresser, J.D. (eds.) Photonic Polymer Systems. Dekker, Basel (1998)Google Scholar
  20. 20.
    Au, L., Solymar, L.: Higher diffraction orders in photorefractive materials. IEEE J. Quantum Electron. 24, 162–168 (1988)CrossRefGoogle Scholar
  21. 21.
    Feinberg, J.: A symmetric self-defocusing of an optical beam for photorefractive effect. J. Opt. Soc. Am. 72, 46–51 (1982)CrossRefGoogle Scholar
  22. 22.
    Cronin-Golomb, M., Yariv, A.: Optical limiters using photorefractive nonlinearities. J. Appl. Phys. 57, 4906–4910 (1985)CrossRefGoogle Scholar
  23. 23.
    Vazquez, R., Vachss, F., Neurgaonkar, R., Ewbank, M.: Large photorefractive coupling coefficient in a thin cerium-doped strontium barium niobate crystal. J. Opt. Soc. Am. B 8, 1932–1941 (1992)CrossRefGoogle Scholar
  24. 24.
    Grunnet-Jepsen, A., Thompson, C.L., Tweig, R.J., Moerner, W.E.: Amplified scattering in a high-gain photorefractive polymer. J. Opt. Soc. Am. B 15, 901–904 (1998)CrossRefGoogle Scholar
  25. 25.
    Meerholz, K., Bittner, R., De Nardin, Y.: Field asymmetry of the dynamic gain coefficient in organic photorefractive devices. Opt. Commun. 150, 205–209 (1998)CrossRefGoogle Scholar
  26. 26.
    Gad, E.: Wave mixing and image processing using photorefractive polymers. Ph.D. Dissertation, University of Alabama in Huntsville (2000)Google Scholar
  27. 27.
    Gonzales, R., Woods, R.: Digital Image Processing, 3rd edn. Prenctice-Hall, New York (2007)Google Scholar
  28. 28.
    Banerjee, P.P.: Organic thin-film photorefractive materials. In: Weighhofer, W., Lakhtakia, A. (eds.) Introduction to Complex Mediums for Optics and Electromagnetics. SPIE Press, Bellingham (2003)Google Scholar
  29. 29.
    Goodman, J.: Introduction to Fourier Optics, 3rd edn. Roberts, Greenwood Village (2005)Google Scholar
  30. 30.
    Poon, T.-C., Banerjee, P.P.: Contemporary Optical Image Processing with MATLAB. Elsevier, Oxford (2001)Google Scholar
  31. 31.
    VanderLugt, A.: Signal detection by complex spatial filtering. IEEE Trans. Inform. Theory 10, 139–145 (1964)CrossRefGoogle Scholar
  32. 32.
    Weaver, C.S., Goodman, J.W.: A technique for optically convolving two functions. Appl. Opt. 5, 1248–1249 (1966)CrossRefGoogle Scholar
  33. 33.
    Yu, F.T.S., Lu, X.J.: A real-time programmable joint transform correlator. Opt. Commun. 52, 10–16 (1984)CrossRefGoogle Scholar
  34. 34.
    Pepper, D.M., AuYeung, J., Fekete, D., Yariv, A.: Spatial convolution and correlation of optical fields via degenerate four-wave mixing. Opt. Lett. 3, 7–9 (1978)CrossRefGoogle Scholar
  35. 35.
    Alam, M.S., Khoury, J.S.: Fringe-adjusted incoherent erasure joint transform correlator. Opt. Eng. 37, 75–82 (1998)CrossRefGoogle Scholar
  36. 36.
    Slezak, D., Pal, S., Kang, B.-H., Gu, J., Kuroda, H., Kim, T.-H.: Signal Processing, Image Processing and Pattern Recognition. Springer, Berlin (2009)CrossRefGoogle Scholar
  37. 37.
    Khoury, J., Cronin-Golomb, M., Gianino, P., Woods, C.: Photorefractive two-beam-coupling nonlinear joint-transform correlator. J. Opt. Soc. Am. B 11, 2167–2174 (1994)CrossRefGoogle Scholar
  38. 38.
    Asimellis, G., Khoury, J., Woods, C.: Effects of saturation on the nonlinear incoherent-erasure joint transform correlator. J. Opt. Soc. Am. A 13, 1345–1356 (1996)CrossRefGoogle Scholar
  39. 39.
    Khoury, J., Gianino, P.D., Woods, C.L.: Engineering aspects of the two-beam coupling correlator. Opt. Eng. 39, 1177–1183 (2000)CrossRefGoogle Scholar
  40. 40.
    Khoury, J., Donoghue, J., Haji-Saeed, B., Woods, C.L., Kierstead, J., Peyghambarian, N., Yamamoto, M.: Characterization of optical correlation via dynamic range compression using organic photorefractive materials. Proc. SPIE 8398, 83980L-1–83980L-16 (2012)Google Scholar
  41. 41.
    Kumar, B.V.K.V., Hassebrook, L.: Performance measures for correlation filters. Appl. Opt. 29, 2997–3006 (1990)CrossRefGoogle Scholar
  42. 42.
    Khoury, J., Alam, M.S., Banerjee, P.P., Nehmetallah, G.T., Durrant, W.M., Martin, D.M., Donoghue, J.: Performance comparison of photorefractive two-beam coupling correlator with optimal filter based correlators. Invited Paper. Proc. SPIE 9094, 909405-1–909405-13 (2014)Google Scholar
  43. 43.
    Khoury, J., Donoghue, J., Haji-Saeed, B., Woods, C.L., Kierstead, J., Peyghambarian, N., Yamamoto, M.: Adaptive filtering with organic photorefractive materials via four-wave mixing. Proc. SPIE 8398, 83980F-1–83980F-12 (2012)Google Scholar
  44. 44.
    Banerjee, P., Buller, S., Leibig, C., Cook, G., Evans, D., Blanche, P., Thomas, J., Peyghambarian, N.: Time dynamics of self-pumped reflection gratings in photorefractive polymers. J. Appl. Phys. 111, 013108 (2012)CrossRefGoogle Scholar
  45. 45.
    Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.-A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21, 30392–30400 (2013)CrossRefGoogle Scholar
  46. 46.
    Evans, D.R., Basun, S.A., Saleh, M.A., Allen, A.S., Pottenger, T.P., Cook, G., Bunning, T.J., Guha, S.: Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate. IEEE J. Quantum Electron. 38, 1661–1665 (2002)CrossRefGoogle Scholar
  47. 47.
    Moerner, W.E., Silence, S.M.: Polymeric photorefractive materials. Chem. Rev. 94, 127–155 (1994)CrossRefGoogle Scholar
  48. 48.
    Christenson, C.W., Thomas, J., Blanche, P.-A., Voorakaranam, R., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Grating dynamics in a photorefractive polymer with Alq3 electron traps. Opt. Express 18, 9358–9365 (2010)CrossRefGoogle Scholar
  49. 49.
    Wang, L., Ng, M.-K., Yu, L.: Photorefraction and complementary grating competition in bipolar transport molecular material. Phys. Rev. B 62, 4973–4984 (2000)CrossRefGoogle Scholar
  50. 50.
    Zhang, Z., Ding, Y., Eichler, H., Fu, P., Shen, D., Ma, X., Chen, J.: Electron-hole competition in photorefractive Rb doped KNbO3. Opt. Commun. 142, 279–282 (1997)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Partha P. Banerjee
    • 1
    Email author
  • Dean R. Evans
    • 2
  • Carl M. Liebig
    • 2
  1. 1.Electro-Optics Program, and Department of Electrical and Computer EngineeringUniversity of DaytonDaytonUSA
  2. 2.Air Force Research LaboratoryWright Patterson Air Force BaseDaytonUSA

Personalised recommendations