Advertisement

Inorganic–Organic Photorefractive Hybrids

  • Dean R. Evans
  • Gary Cook
  • Victor Yu. Reshetnyak
  • Carl M. Liebig
  • Sergey A. Basun
  • Partha P. Banerjee
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)

Abstract

Organic hybrids, comprising polymers and liquid crystals, have been explored for photorefractive beam coupling and diffractive applications for almost two decades. The work presented in this chapter explores an alternative approach of using inorganic–organic hybrids, comprising space-charge field generating inorganic crystals as windows for liquid crystal cells. The primary advantages of the inorganic–organic hybrid approach, such as the ability to produce high-resolution gratings, are discussed. Experiments conducted to gain a fundamental understanding of the physical mechanisms leading to beam coupling with this technology are described in detail, as well as methods used to increase the gain coefficient of the devices; these methods include increasing the contribution from the flexoelectric effect and the incorporation of ferroelectric nanoparticles. A discussion on the ferroelectric nanoparticles themselves is also provided.

Keywords

Liquid Crystal Organic Hybrid CrystalCholesteric Liquid Crystal Liquid Crystal Cell Liquid Crystal Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Grabar, A., Kedyk, I., Gurzan, M., Stoika, I., Molnar, A., Vysochanskii, Y.M.: Enhanced photorefractive properties of modified Sn2P2S6. Opt. Commun. 188, 187 (2001)CrossRefGoogle Scholar
  2. 2.
    Cook, G., Carns, J.L., Saleh, M.A., Evans, D.R.: Anisotropy of nonlinear coupling of two counter-propagating waves in photorefractive Fe:KNbO3. Phys. Rev. B 73, 174102 (2006)CrossRefGoogle Scholar
  3. 3.
    Cook, G., Finnan, C.J., Jones, D.C.: High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate. Appl. Phys. B 68, 911 (1999)CrossRefGoogle Scholar
  4. 4.
    Evans, D., Cook, G.: Bragg-matched photorefractive two-beam coupling in organic–inorganic hybrids. J. Nonlinear Opt. Phys. Mater. 16, 271 (2007)CrossRefGoogle Scholar
  5. 5.
    Brignon, A., Bongrand, I., Loiseaux, B., Huignard, J.P.: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve. Opt. Lett. 22, 1855 (1997)CrossRefGoogle Scholar
  6. 6.
    Kajzar, F., Bartkiewicz, S., Miniewicz, A.: Optical amplification with high gain in hybrid-polymer–liquid-crystal structures. Appl. Phys. Lett. 74, 2924 (1999)CrossRefGoogle Scholar
  7. 7.
    Bartkiewicz, S., Matczyszyn, K., Miniewicz, A., Kajzar, F.: High gain of light in photoconducting polymer–nematic liquid crystal hybrid structures. Opt. Commun. 187, 257 (2001)CrossRefGoogle Scholar
  8. 8.
    Tabiryan, N.V., Umeton, C.: Surface-activated photorefractivity and electro-optic phenomena in liquid crystals. J. Opt. Soc. Am. B 15, 1912 (1998)CrossRefGoogle Scholar
  9. 9.
    Cook, G., Wyres, C.A., Deer, M.J., Jones, D.C.: Hybrid organic-inorganic photorefractives. Proc. SPIE 5213, 63 (2003)CrossRefGoogle Scholar
  10. 10.
    Jones, D., Cook, G.: Theory of beam coupling in a hybrid photorefractive-liquid crystal cell. Opt. Commun. 232, 399 (2004)CrossRefGoogle Scholar
  11. 11.
    Cook, G., Glushchenko, A., Reshetnyak, V., Griffith, A., Saleh, M., Evans, D.: Nanoparticle doped organic-inorganic hybrid photorefractives. Opt. Exp. 16, 4015 (2008)CrossRefGoogle Scholar
  12. 12.
    Anczykowska, A., Bartkiewicz, S., Nyk, M., Myśliwiec, J.: Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles. Appl. Phys. Lett. 99, 191109 (2011)CrossRefGoogle Scholar
  13. 13.
    Acreman, A., Kaczmarek, M., D’Alessandro, G.: Gold nanoparticle liquid crystal composites as a tunable nonlinear medium. Phys. Rev. E 90, 012504 (2014)CrossRefGoogle Scholar
  14. 14.
    Reshetnyak, V.Y., Pinkevych, I., Cook, G., Evans, D., Sluckin, T.: Two-beam energy exchange in a hybrid photorefractive inorganic-cholesteric cell. Mol. Cryst. Liq. Cryst. 560, 8 (2012)CrossRefGoogle Scholar
  15. 15.
    Tong, X.C.: Advanced Materials for Integrated Optical Waveguides, p. 93. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  16. 16.
    Evans, D.R., Cook, G.: Nonlinear optics: research continues to advance photorefractive beam coupling. Laser Focus World 41, 67 (2005)Google Scholar
  17. 17.
    Evans, D., Cook, G., Carns, J.: Holographic and nonholographic organic–inorganic hybrids. Mol. Cryst. Liq. Cryst. 488, 190–201 (2008)CrossRefGoogle Scholar
  18. 18.
    Cook, G., Carns, J., Saleh, M., Evans, D.: Substrate induced pre-tilt in hybrid liquid crystal/inorganic photorefractives. Mol. Cryst. Liq. Cryst. 453, 141 (2006)CrossRefGoogle Scholar
  19. 19.
    Rudquist, P., Lagerwall, S.: On the flexoelectric effect in nematics. Liq. Cryst. 23, 503 (1997)CrossRefGoogle Scholar
  20. 20.
    Baur, G., Wittwer, V., Berreman, D.: Determination of the tilt angles at surfaces of substrates in liquid crystal cells. Phys. Lett. A 56, 142 (1976)CrossRefGoogle Scholar
  21. 21.
    Sutherland, R.L., Cook, G., Evans, D.R.: Determination of large nematic pre-tilt in liquid crystal cells with mechanically rubbed photorefractive Ce: SBN windows. Opt. Exp. 14, 5365 (2006)CrossRefGoogle Scholar
  22. 22.
    Wingbermühle, J., Meyer, M., Schirmer, O., Pankrath, R., Kremer, R.: Electron paramagnetic resonance of Ce3+ in strontium-barium niobate. J. Phys. Condens. Matter 12, 4277 (2000)CrossRefGoogle Scholar
  23. 23.
    Reshetnyak, V.Y., Pinkevych, I.P., Cook, G., Evans, D.R., Sluckin, T.J.: Two-beam energy exchange in a hybrid photorefractive-flexoelectric liquid-crystal cell. Phys. Rev. E 81, 031705 (2010)CrossRefGoogle Scholar
  24. 24.
    de Gennes, P.G., Prost, J.: The Physics of Liquid Crystals, p. 136. Oxford University Press, Oxford (1995)Google Scholar
  25. 25.
    Buka, A., Eber, N.: Flexoelectricity in Liquid Crystals: Theory, Experiments and Applications, p. 300. World Scientific, Singapore (2012)CrossRefGoogle Scholar
  26. 26.
    Herrington, M.: Electrical and Optical Effects in Hybrid Liquid Crystal Cells. University of Southampton, Southampton (2011)Google Scholar
  27. 27.
    Klein, W., Cook, B.D.: Unified approach to ultrasonic light diffraction. IEEE Trans. Sonics Ultrason. 14, 123 (1967)CrossRefGoogle Scholar
  28. 28.
    Moharam, M., Young, L.: Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 17, 1757 (1978)CrossRefGoogle Scholar
  29. 29.
    Crocker, M.J.: Handbook of Acoustics. Wiley, New York (1998)Google Scholar
  30. 30.
    Roosen, G., Agulló-López, F., Schirmer, O.: Proceedings of Symposium C on Photorefractive materials: growth and doping, optical and electrical characterizations, charge transfer processes and space charge field effects, applications of the 1994 E-MRS Spring Conference (1995)Google Scholar
  31. 31.
    Reeves, R.J., Jani, M.G., Jassemnejad, B., Powell, R.C., Mizell, G.J., Fay, W.: Photorefractive properties of KNbO3. Phys. Rev. B 43, 71 (1991)CrossRefGoogle Scholar
  32. 32.
    Cook, G., Duignan, J., Jones, D.: Photovoltaic contribution to counter-propagating two-beam coupling in photorefractive lithium niobate. Opt. Commun. 192, 393 (2001)CrossRefGoogle Scholar
  33. 33.
    Gvozdovskyy, I., Shcherbin, K., Evans, D., Cook, G.: Infrared sensitive liquid crystal photorefractive hybrid cell with semiconductor substrates. Appl. Phys. B 104, 883 (2011)CrossRefGoogle Scholar
  34. 34.
    Garcia, R.R., Berrospe-Rodriguez, C.: Enhancement of the coupling gain in GaAs-liquid crystal hybrid devices. Mol. Cryst. Liq. Cryst. 561, 68 (2012)CrossRefGoogle Scholar
  35. 35.
    Private communication, Dean Evans, Gary Cook, and R. L. Sutherland (2015)Google Scholar
  36. 36.
    Reshetnyak, V.Y., Pinkevych, I., Sluckin, T., Cook, G., Evans, D.: Beam coupling in hybrid photorefractive inorganic-cholesteric liquid crystal cells: impact of optical rotation. J. Appl. Phys. 115, 103103 (2014)CrossRefGoogle Scholar
  37. 37.
    Chigrinov, V.: Liquid crystal devices: physics and applications. ASID’04 tutorial notes (2004)Google Scholar
  38. 38.
    Reznikov, Y., Buchnev, O., Tereshchenko, O., Reshetnyak, V., Glushchenko, A., West, J.: Ferroelectric nematic suspension. Appl. Phys. Lett. 82, 1917 (2003)CrossRefGoogle Scholar
  39. 39.
    Li, F., Buchnev, O., Cheon, C.I., Glushchenko, A., Reshetnyak, V., Reznikov, Y., Sluckin, T.J., West, J.L.: Orientational coupling amplification in ferroelectric nematic colloids. Phys. Rev. Lett. 97, 147801 (2006)CrossRefGoogle Scholar
  40. 40.
    Mikułko, A., Arora, P., Glushchenko, A., Lapanik, A., Haase, W.: Complementary studies of BaTiO3 nanoparticles suspended in a ferroelectric liquid-crystalline mixture. Europhys. Lett. 87, 27009 (2009)CrossRefGoogle Scholar
  41. 41.
    Cook, G., Reshetnyak, V.Y., Ziolo, R., Basun, S., Banerjee, P., Evans, D.: Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles. Opt. Exp. 18, 17339 (2010)CrossRefGoogle Scholar
  42. 42.
    Buchnev, O., Dyadyusha, A., Kaczmarek, M., Reshetnyak, V., Reznikov, Y.: Enhanced two-beam coupling in colloids of ferroelectric nanoparticles in liquid crystals. J. Opt. Soc. Am. B 24, 1512 (2007)CrossRefGoogle Scholar
  43. 43.
    Shukla, R., Liebig, C., Evans, D., Haase, W.: Electro-optical behaviour and dielectric dynamics of harvested ferroelectric LiNbO3 nanoparticle-doped ferroelectric liquid crystal nanocolloids. RCS Adv. 4, 18529 (2014)Google Scholar
  44. 44.
    Basu, R., Garvey, A.: Effects of ferroelectric nanoparticles on ion transport in a liquid crystal. Appl. Phys. Lett. 105, 151905 (2014)CrossRefGoogle Scholar
  45. 45.
    Beh, E.S.: Interfacial Polarization Effects on Molecular Catalysis. Stanford University, Stanford (2015)Google Scholar
  46. 46.
    Basun, S., Cook, G., Reshetnyak, V.Y., Glushchenko, A., Evans, D.: Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension. Phys. Rev. B 84, 024105 (2011)CrossRefGoogle Scholar
  47. 47.
    Atkuri, H., Cook, G., Evans, D., Cheon, C., Glushchenko, A., Reshetnyak, V., Reznikov, Y., West, J., Zhang, K.: Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids. J. Opt. A Pure Appl. Opt. 11, 024006 (2009)CrossRefGoogle Scholar
  48. 48.
    Zhao, Z., Buscaglia, V., Viviani, M., Buscaglia, M.T., Mitoseriu, L., Testino, A., Nygren, M., Johnsson, M., Nanni, P.: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B 70, 024107 (2004)CrossRefGoogle Scholar
  49. 49.
    Cook, G., Barnes, J., Basun, S., Evans, D., Ziolo, R., Ponce, A., Reshetnyak, V.Y., Glushchenko, A., Banerjee, P.: Harvesting single ferroelectric domain stressed nanoparticles for optical and ferroic applications. J. Appl. Phys. 108, 064309 (2010)CrossRefGoogle Scholar
  50. 50.
    Morozovska, A.N., Glinchuk, M.D., Eliseev, E.A.: Phase transitions induced by confinement of ferroic nanoparticles. Phys. Rev. B 76, 014102 (2007)CrossRefGoogle Scholar
  51. 51.
    Evans, D., Basun, S., Cook, G., Pinkevych, I., Reshetnyak, V.Y.: Electric field interactions and aggregation dynamics of ferroelectric nanoparticles in isotropic fluid suspensions. Phys. Rev. B 84, 174111 (2011)CrossRefGoogle Scholar
  52. 52.
    Choi, K.J., Biegalski, M., Li, Y., Sharan, A., Schubert, J., Uecker, R., Reiche, P., Chen, Y., Pan, X., Gopalan, V.: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004)CrossRefGoogle Scholar
  53. 53.
    Ederer, C., Spaldin, N.A.: Effect of epitaxial strain on the spontaneous polarization of thin film ferroelectrics. Phys. Rev. Lett. 95, 257601 (2005)CrossRefGoogle Scholar
  54. 54.
    Liquid Crystals Beyond Displays: Chemistry, Physics, and Applications, Editor Quan Li, Chapter 12 Ferroelectric Colloids in Liquid Crystals, Yu. Reznikov, Wiley 2012Google Scholar
  55. 55.
    Zembilgotov, A., Pertsev, N., Kohlstedt, H., Waser, R.: Ultrathin epitaxial ferroelectric films grown on compressive substrates: competition between the surface and strain effects. J. Appl. Phys. 91, 2247 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Dean R. Evans
    • 1
  • Gary Cook
    • 1
  • Victor Yu. Reshetnyak
    • 2
  • Carl M. Liebig
    • 1
  • Sergey A. Basun
    • 1
    • 3
  • Partha P. Banerjee
    • 4
  1. 1.Air Force Research LaboratoryWright Patterson Air Force BaseDaytonUSA
  2. 2.Taras Shevchenko National University of KyivKyivUkraine
  3. 3.Azimuth CorporationDaytonUSA
  4. 4.Electro-Optics Program, Department of Electrical and Computer EngineeringUniversity of DaytonDaytonUSA

Personalised recommendations