Photorefractive Properties of Polymer Composites Based on Carbon Nanotubes
- 614 Downloads
Abstract
Photorefractive polymer composites based on polymers with a high glass transition temperature, such as aromatic polyimide, Tg = 240 °C, polyvinylcarbazole, Tg = 200 °C, in which the random distribution of photosensitizers and nonlinear optical chromophores as dopants are “frozen” are discussed. In the case of the random distribution of chromophores, the third-order electric susceptibility has a nonzero value. Therefore, the nanosized structures having the high third-order polarizability due to an extended conjugated-bond system that is the carbon nanotubes should be used. The use of the same chromophores as the spectral sensitizers allowed us to develop polymer composites with photorefractive sensitivity in the near-IR region, at 1064 and 1550 nm. Photoelectric, charge transport, nonlinear optical, and photorefractive properties were investigated and results are presented in this chapter. The net two-beam coupling gain coefficients of 110 cm−1 at 1064 nm and 27.4 cm−1 at 1550 nm were obtained.
Keywords
Polymer Composite Optical Absorption Coefficient Drift Mobility Photorefractive Effect Photorefractive PropertyNotes
Acknowledgements
This work was financially supported by the Russian Foundation for Basic Research (grants nos. 11-03-00260, 14-03-00049) and the Swedish Foundation for Strategic Research (SSF).
References
- 1.Salvador, M., Prauzner, J., Köber, S., Meerholz, K., Turek, J.J., Jeong, K., Nolte, D.D.: Three-dimensional holographic imaging of living tissue using a highly sensitive photorefractive polymer device. Opt. Express 17, 11834 (2009)CrossRefGoogle Scholar
- 2.Tsujimura, S., Kinasahi, K., Sakai, W., Tsutsumi, N.: High speed photorefractive response capability in triphenylamine polymer-based composites. Appl. Phys. Express 5, 064101 (2012)CrossRefGoogle Scholar
- 3.Tay, S., Thomas, J., Eralp, M., Li, G., Kippelen, B., Marder, S.R., Meredith, G., Schulzgen, A., Peyghambarian, N.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85, 4561–4563 (2004)CrossRefGoogle Scholar
- 4.Calvete, M.J.F.: Near-infrared absorbing organic materials with nonlinear transmission properties. Int. Rev. Phys. Chem. 31, 319 (2012)CrossRefGoogle Scholar
- 5.Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104, 3267–3314 (2004)CrossRefGoogle Scholar
- 6.Würthner, F., Wortmann, R., Meerholz, K.: Chromophore design for photorefractive organic materials. ChemPhysChem 3, 17–31 (2002)CrossRefGoogle Scholar
- 7.Andrews, J.H., Zrebiec, K.: Photorefraction. In: Encyclopedia of Polymer Science and Technology, pp. 1–28. Wiley, New York (2005)Google Scholar
- 8.Vannikov, A.V., Grishina, A.D.: The photorefractive effect in polymeric systems. Russ. Chem. Rev. 72, 471–488 (2003)CrossRefGoogle Scholar
- 9.Kusyk, M.G.: A simplified three-level model for describing the molecular third-order nonlinear optical susceptibility. Phys. Rev. Lett. 85, 1218–1221 (2000)CrossRefGoogle Scholar
- 10.Kippelen, B., Marder, S.R., Hendrickx, E., Maldonado, J.L., Guillemet, G., Volodin, B.L., Steele, D.D., Enami, Y., Sandalphon, Yao, Y.J., Wang, J.F., Röckel, H., Erskine, L., Peyghambarian, N.: Infrared photorefractive polymers and their application for imaging. Science 279, 54–61 (1998)CrossRefGoogle Scholar
- 11.Köber, S., Salvador, M., Meerholz, K.: Organic photorefractive materials and applications. Adv. Mater. 23, 4725–4763 (2011)CrossRefGoogle Scholar
- 12.Yu, P., Balasubramanian, S., Ward, T.Z., Chandrasekhar, M., Chandrasekhar, H.R.: Optimisation of photorefractive multiple quantum wells for biomedical imaging. Synth. Met. 155, 406–409 (2005)CrossRefGoogle Scholar
- 13.Vannikov, A.V., Grishina, A.D., Gorbunova, Y.G., Enakieva, Y.Y., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Tsivadze, A.Y.: Infrared photorefractive composites based on supramolecular ensembles of ruthenium (II) tetra-15-crown-5-phthalocyaninate. Dokl. Phys. Chem. 403, 137–141 (2005)CrossRefGoogle Scholar
- 14.Grishina, A.D., Shapiro, B.I., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Berendyaev, V.I., Rychwalski, R.W., Vannikov, A.V.: IR-region photorefractive composites based on polyimide and J-aggregates of cyanine dye. Polym. Sci. Ser. A 47, 151–159 (2005)Google Scholar
- 15.Vannikov, A.V., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V.: Infrared photorefractive composites based on polyimide and J-aggregates of cyanine dye. J. Nonlinear Opt. Phys. Mater. 14, 439–448 (2005)CrossRefGoogle Scholar
- 16.Licea-Jimeґnez, L., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savelyev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-infrared photorefractive polymer composites based on carbon nanotubes. Carbon 44, 113–120 (2006)CrossRefGoogle Scholar
- 17.Klein, K.L., Melechko, A.V., McKnight, T.E., Retterer, S.T., Rack, P.D., Fowlkes, J.D., Joy, D.C., Simpson, M.L.: Surface characterization and functionalization of carbon nanofibers. J. Appl. Phys. 103, 061301 (2008)CrossRefGoogle Scholar
- 18.Grishina, A.D., Pereshivko, L.Y., Licea-Jimeґnez, L., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-IR photorefractive composites based on oxidized single-wall carbon nanotubes. High Energy Chem. 42, 378–384 (2008)CrossRefGoogle Scholar
- 19.Pasquier, A.D., Unalan, H.E., Kanwal, A., Miller, S., Chhowalla, M.: Conducting and transparent single-wall carbon nanotube electrodes for polymer-fullerene solar cells. Appl. Phys. Lett. 87, 203511–203514 (2005)CrossRefGoogle Scholar
- 20.Ago, H., Kugler, T., Cacialli, F., Salaneck, W.R., Shaffer, M.S.P., Windle, A.H., Friend, R.H.: Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B 103, 8116–8121 (1999)CrossRefGoogle Scholar
- 21.Tameev, A.R., Licea-Jiménez, L., Pereshivko, L.Y., Rychwalski, R.W., Vannikov, A.V.: Charge carrier mobility in films of carbon-nanotube-polymer composites. J. Phys. Conf. Ser. 61, 1152–1156 (2007)CrossRefGoogle Scholar
- 22.Tameev, A.R., Pereshivko, L.Y., Vannikov, A.V.: Electrophysical properties of poly(vinylcarbazole)—carbon nanotubes composite films. Polym. Sci. Ser. A 51, 182–186 (2009)CrossRefGoogle Scholar
- 23.Vannikov, A.V., Grishina, A.D., Rychwalski, R.W.: Photoelectric, nonlinear optical and photorefractive properties of polymer/carbon nanotube composites. Carbon 49, 311–319 (2011)CrossRefGoogle Scholar
- 24.Novikov, S.V., Dunlap, D.H., Kenkre, V.M., Parris, P.E., Vannikov, A.V.: Essential role of correlations in governing charge transport in disordered organic materials. Phys. Rev. Lett. 81, 4472–4475 (1998)CrossRefGoogle Scholar
- 25.Novikov, S.V.: Charge-carrier transport in disordered polymers. J. Polym. Sci. B 41, 2584–2594 (2003)CrossRefGoogle Scholar
- 26.Novikov, S.V., Vannikov, A.V.: Hopping charge transport in disordered organic materials: where is the disorder? J. Phys. Chem. C 113, 2532–2540 (2009)CrossRefGoogle Scholar
- 27.Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21(25), 30392–30400 (2013)CrossRefGoogle Scholar
- 28.Dalton, A.B., Coleman, J.N., Panhuis, M.I.H., McCarthy, B., Drury, A., Blau, A., Paci, B., Nunzi, J.-M., Byrne, H.J.: Controlling the optical properties of a conjugated co-polymer through variation of backbone isomerism and the introduction of carbon nanotubes. J. Photochem. Photobiol. A Chem. 144, 31–41 (2001)CrossRefGoogle Scholar
- 29.Laryushkin, A.S., Savel’ev, V.V., Zolotarevskii, V.I., Grishina, A.D., Krivenko, T.V., Rychwalski, R.W., Vannikov, A.V.: Third-order optical susceptibility of single walled carbon nanotubes. High Energy Chem. 45, 245–249 (2011)CrossRefGoogle Scholar
- 30.Gnoli, A., Razzari, L., Righini, M.: Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Opt. Express 13, 7976–7981 (2005)CrossRefGoogle Scholar
- 31.Grishina, A.D., Licea-Jimenez, L., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Infrared photorefractive composites based on polyvinylcarbazole and carbon nanotubes. High Energy Chem. 40, 341–347 (2006)CrossRefGoogle Scholar
- 32.Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)CrossRefGoogle Scholar
- 33.Lee, W., Chiu, C.S.: Observation of self-diffraction by gratings in nematic liquid crystals doped with carbon nanotubes. Opt. Lett. 26, 521–523 (2001)CrossRefGoogle Scholar
- 34.Khoo, I.C., Ding, J., Zhang, Y., Chen, K., Diaz, A.: Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal. Appl. Phys. Lett. 82, 3587–3589 (2003)CrossRefGoogle Scholar
- 35.Vannikov, A.V., Grishina, A.D.: Photorefractive polymer composites based on nanosized nonlinear optical chromophores. High Energy Chem. 41, 162–175 (2007)CrossRefGoogle Scholar
- 36.Grishina, A.D., Pereshivko, L.Y., Licea-Jiménez, L., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Carbon nanotube-containing photorefractive polymer composites operating at telecommunication wavelengths. High Energy Chem. 41, 267–273 (2007)CrossRefGoogle Scholar
- 37.Mecher, E., Gallego-Gomez, F., Tillmann, H., Horhold, H.-H., Hummelen, J.C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418, 959–964 (2002)CrossRefGoogle Scholar
- 38.Douglas, W.E., Klapshina, L.G., Kuzhelev, A.S., Peng, W., Semenov, V.V.: N-Ethylcarbazole as a structure-directing agent in poly[(ethynediyl)(arylene)(ethynediyl) silylene]-poly(phenylsilsesquioxane) hybrid nanomaterials exhibiting photorefraction at telecommunication wavelengths. J. Mater. Chem. 13, 2809–2813 (2003)CrossRefGoogle Scholar
- 39.Acebal, P., Blaya, S., Carretero, L.: Bidimensional chromophores for photorefractive polymers with working wavelength in the near IR. Opt. Express 13, 8296–8307 (2005)CrossRefGoogle Scholar
- 40.Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Zolotarevskii, V.I.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99, 643–648 (2005)CrossRefGoogle Scholar
- 41.Grishina, A.D., Licea-Jimenez, L., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Near-infrared range photorefractive composites based on poly(vinylcarbazole), multiwall carbon nanotubes, and fullerene C60. Polym. Sci. Ser. A 50, 985–991 (2008)CrossRefGoogle Scholar
- 42.Laryushkin, A.S., Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: The effect of cyanine dyes on photorefractive properties of composites based on carbon nanotubes. Prot. Met. Phys. Chem. Surf. 48, 191–198 (2012)CrossRefGoogle Scholar
- 43.Verkhovskaya, K.A., Laryushkin, A.S., Savel’ev, V.V., Grishina, A.D., Vannikov, A.V.: Photorefractive properties of a nanocomposite based on a ferroelectric polymer. Tech. Phys. 59, 1224–1227 (2014)CrossRefGoogle Scholar