Advertisement

Introduction to the Photorefractive Effect in Polymers

  • Pierre-Alexandre BlancheEmail author
  • Brittany Lynn
Chapter
  • 677 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 240)

Abstract

After a brief historical introduction about photorefractive materials, this chapter provides an extensive overview of the mathematical modeling of the photorefractive effect in organic compounds. The theories of charge photo-generation, transport and trapping, as well as chromophore orientation in the space-charge field are detailed. We then discuss the different molecular species providing the respective functionalities to the PR effect: electroconductive matrices, nonlinear chromophores, photo-sensitizers, and plasticizers, along with the recent developments in the search for more effective materials. Several electrode geometries for different types of devices are described before a section on material characterization. This later include measurement techniques of the molecular properties such as energy levels, photoconduction, and index change, followed by the holographic setups such as four-wave mixing and two-beam coupling, along with the theory to extract the important parameters out of the measured quantities.

Keywords

External Electric Field Applied Electric Field Poling Field Charge Generation Photorefractive Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ashkin, A., Boyd, G., Dziedzic, J.: Optically-induced refractive index inhomogeneities in LiNbO3 and LiTaO3. Appl. Phys. 9(1), 5–7 (1966)Google Scholar
  2. 2.
    Chen, F.S.: A laser-induced inhomogeneity of refractive indices in KTN. J. Appl. Phys. 38(8), 3418–3420 (1967)CrossRefGoogle Scholar
  3. 3.
    Chen, F.S., Lamacchia, J.T., Fraser, D.B.: Holographic storage in lithium niobate. Appl. Phys. Lett. 13(7), 223–225 (1968)CrossRefGoogle Scholar
  4. 4.
    Thaxter, J.B.: Electrical control of holographic storage in strontium-barium niobate. Appl. Phys. Lett 15(7), 210 (1969)CrossRefGoogle Scholar
  5. 5.
    White, J.O., Yariv, A.: Real-time image processing via four-wave mixing in a photorefractive medium. Appl. Phys. Lett. 37(1), 5–7 (1980)CrossRefGoogle Scholar
  6. 6.
    Huignard, J.P., Herriau, J.P., Aubourg, P., Spitz, E.: Phase-conjugate wavefront generation via real-time holography in Bi12SiO20 crystals. Opt. Lett. 4(1), 21 (1979)CrossRefGoogle Scholar
  7. 7.
    Pichon, J.P.H.L.: Dynamic joint-fourier-transform correlator by bragg diffraction in photorefractive Bi12SiO20 crystals. Opt. Commun. 36(4), 277–280 (1981)CrossRefGoogle Scholar
  8. 8.
    Ketchel, B.P., Heid, C.A., Wood, G.L., Miller, M.J., Mott, A.G., Anderson, R.J., Salamo, G.J.: Three-dimensional color holographic display. Appl. Opt. 38(29), 6159 (1999)CrossRefGoogle Scholar
  9. 9.
    Günter, P., Huignard, J.-P.: Photorefractive Material and Their Applications 1: Basic Effects. Springer, New York (2006)CrossRefGoogle Scholar
  10. 10.
    Yeh, P.: Introduction to Photorefractive Nonlinear Optics. Wiley Interscience, New York (1993)Google Scholar
  11. 11.
    Sutter, K., Hullinger, J., Günter, P.: Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8-tetracyanoquinodimethane. Opt. Commun. 74(8), 867–870 (1990)Google Scholar
  12. 12.
    Ducharme, S., Scott, J., Twieg, R., Moerner, W.: Observation of the photorefractive effect in a polymer. Phys. Rev. Lett. 66(14), 1846 (1991)CrossRefGoogle Scholar
  13. 13.
    Meerholz, K., Volodin, B., Sandalphon, Kippelen, B., Peyghambarian, N.: A photorefractive polymer with high optical gain and diffraction efficiency near 100%. Nature 371, 497 (1994)CrossRefGoogle Scholar
  14. 14.
    Eralp, M., Thomas, J., Tay, S., Li, G., Schulzgen, A., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Submillisecond response of a photorefractive polymer under single nanosecond pulse exposure. Appl. Phys. Lett. 89(11), 114105 (2006)CrossRefGoogle Scholar
  15. 15.
    Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468(7320), 80–83 (2010)CrossRefGoogle Scholar
  16. 16.
    Moerner, W.E., Silence, S.M., Hache, F., Bjorklund, G.C.: Orientationally enhanced photorefractive effect in polymers. J. Opt. Soc. Am. B 11(2), 320 (1994)CrossRefGoogle Scholar
  17. 17.
    Malliaras, G.G., Krasnikov, V.V., Bolink, H.J., Hadziioannou, G.: Control of charge trapping in a photorefractive polymer. Appl. Phys. Lett. 66(9), 1038 (1995)CrossRefGoogle Scholar
  18. 18.
    Eralp, M., Thomas, J., Tay, S., Li, G., Meredith, G., Schulzgen, A., Peyghambarian, N., Walker, G.A., Barlow, S., Marder, S.R.: High-performance photorefractive polymer operating at 975 nm. Appl. Phys. Lett. 85(7), 1095 (2004)CrossRefGoogle Scholar
  19. 19.
    Eralp, M., Thomas, J., Li, G., Tay, S., Schülzgen, A., Norwood, R.A., Peyghambarian, N., Yamamoto, M.: Photorefractive polymer device with video-rate response time operating at low voltages. Opt. Lett. 31(10), 1408 (2006)CrossRefGoogle Scholar
  20. 20.
    Maldonado, J.L., Ramos-Ortíz, G., Miranda, M.L., Vázquez-Córdova, S., Meneses-Nava, M.A., Barbosa-García, O., Ortíz-Gutiérrez, M.: Two examples of organic opto-electronic devices: light emitting diodes and solar cells. Am. J. Phys. 76(12), 1130 (2008)CrossRefGoogle Scholar
  21. 21.
    Onsager, L.: Initial recombination of ions. Phys. Rev. 54(8), 554–557 (1938)CrossRefGoogle Scholar
  22. 22.
    Mozumder, A.: Effect of an external electric field on the yield of free ions: general results from the Onsager theory. J. Chem. Phys. 60(11), 9–13 (1974)Google Scholar
  23. 23.
    Noolandi, J., Hong, K.M.: Theory of photogeneration and fluorescence quenching. J. Chem. Phys 70(7), 3230 (1979)CrossRefGoogle Scholar
  24. 24.
    Ostroverkhova, O., Moerner, W.E.: Organic photorefractives: mechanisms, materials, and applications. Chem. Rev. 104(7), 3267–3314 (2004)CrossRefGoogle Scholar
  25. 25.
    Merski, J.: Piezomodulation spectroscopy of molecular crystals. IV. The first singlet systems of TCNQ and BDP. J. Chem. Phys 75(8), 3731 (1981)CrossRefGoogle Scholar
  26. 26.
    Howard, I.A., Laquai, F., Keivanidis, P.E., Friend, R.H., Greenham, N.C.: Perylene tetracarboxydiimide as an electron acceptor in organic solar cells: a study of charge generation and recombination. J. Phys. Chem. C 113, 21225–21232 (2009)CrossRefGoogle Scholar
  27. 27.
    Gehrig, D.W., Howard, I.A., Kamm, V., Mangold, H., Neher, D.: Efficiency-limiting processes in low-bandgap polymer: perylene diimide photovoltaic blends. J. Phys. Chem. 118(35), 20077–20085 (2014)Google Scholar
  28. 28.
    Clarke, T.M., Durrant, J.R.: Charge photogeneration in organic solar cells tracey. Chem. Rev. 110, 6736–6767 (2010)CrossRefGoogle Scholar
  29. 29.
    Moharam, M.G., Young, L.: Hologram writing by the photorefractive effect. J. Appl. Phys. 48(8), 3230–3236 (1977)CrossRefGoogle Scholar
  30. 30.
    Moharam, M.G., Gaylord, T.K., Magnusson, R., Young, L.: Holographic grating formation in photorefractive crystals with arbitrary electron transport lengths. J. Appl. Phys. 50(9), 5642–5651 (1979)CrossRefGoogle Scholar
  31. 31.
    Kukhtarev, N., Markov, V., Odulov, S.: Transient energy transfer during hologram formation in LiNbO3 in external electric field. Opt. Commun. 23(3), 338–343 (1977)CrossRefGoogle Scholar
  32. 32.
    Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., Vinetskii, V.L.: Holographic storage in electrooptic crystals. I. Steady state. Ferroelectrics 22, 949–960 (1979)CrossRefGoogle Scholar
  33. 33.
    Schildkraut, J.S., Buettner, A.V.: Theory and simulation of the formation and erasure of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(5), 1888–1893 (1992)CrossRefGoogle Scholar
  34. 34.
    Schildkraut, J.S., Cui, Y.: Zero-order and first-order theory of the formation of space-charge gratings in photoconductive polymers. J. Appl. Phys. 72(11), 5055–5060 (1992)CrossRefGoogle Scholar
  35. 35.
    Ostroverkhova, O., Singer, K.D.: Space-charge dynamics in photorefractive polymers. J. Appl. Phys. 92(4), 1727–1743 (2002)CrossRefGoogle Scholar
  36. 36.
    Oh, J.W., Lee, C., Kim, N.: Influence of chromophore content on the steady-state space charge formation of poly[methyl-3-(9-carbazolyl) propylsiloxane]-based polymeric photorefractive composites. J. Appl. Phys. 104(7) (2008)Google Scholar
  37. 37.
    Tsutsumi, N., Shimizu, Y.: Asymmetric two-beam coupling with high optical gain and high beam diffraction in external-electric-field-free polymer composites. Jpn. J. Appl. Phys. 43(6A), 3466–3472 (2004)CrossRefGoogle Scholar
  38. 38.
    Tanaka, A., Nishide, J., Sasabe, H.: Asymmetric energy transfer in photorefractive polymer composites under non-electric field. Mol. Cryst. Liq. Cryst. 504(1), 44–51 (2009)CrossRefGoogle Scholar
  39. 39.
    Gallego-Gómez, F., del Monte, F., Meerholz, K.: Optical gain by a simple photoisomerization process. Nat. Mater. 7(6), 490–497 (2008)CrossRefGoogle Scholar
  40. 40.
    Jakob, T., Schloter, S., Hofmann, U., Grasruck, M., Schreiber, A., Haarer, D.: Influence of the dispersivity of charge transport on the holographic properties of organic photorefractive materials. J. Chem. Phys. 111(23), 10633–10639 (1999)CrossRefGoogle Scholar
  41. 41.
    Zilker, S., Grasruck, M., Wolff, J., Schloter, S., Leopold, A., Kol’chenko, M., Hofmann, U., Schreiber, A., Strohriegl, P., Hohle, C., Haarer, D.: Characterization of charge generation and transport in a photorefractive organic glass: comparison between conventional and holographic time-of-flight experiments. Chem. Phys. Lett. 306(5–6), 285–290 (1999)CrossRefGoogle Scholar
  42. 42.
    Kulikovsky, L., Neher, D., Mecher, E., Meerholz, K., Hörhold, H.-H., Ostroverkhova, O.: Photocurrent dynamics in a poly(phenylene vinylene)-based photorefractive composite. Phys. Rev. B 69(12), 29–31 (2004)CrossRefGoogle Scholar
  43. 43.
    Oh, J.W., Lee, C., Kim, N.: The effect of trap density on the space charge formation in polymeric photorefractive composites. J. Chem. Phys 130(13), 134909 (2009)CrossRefGoogle Scholar
  44. 44.
    Thomas, J., Fuentes-Hernandez, C., Yamamoto, M., Cammack, K., Matsumoto, K., Walker, G.A., Barlow, S., Kippelen, B., Meredith, G., Marder, S.R., Peyghambarian, N.: Bistriarylamine polymer-based composites for photorefractive applications. Adv. Mater. 16(22), 2032–2036 (2004)CrossRefGoogle Scholar
  45. 45.
    Wang, L., Ng, M.-K., Yu, L.: Photorefraction and complementary grating competition in bipolar transport molecular material. Phys. Rev. B 62(8), 4973–4984 (2000)CrossRefGoogle Scholar
  46. 46.
    Christenson, C.W., Thomas, J., Blanche, P.-A., Voorakaranam, R., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Grating dynamics in a photorefractive polymer with Alq(3) electron traps. Opt. Express 18(9), 9358–9365 (2010)CrossRefGoogle Scholar
  47. 47.
    Liebig, C.M., Buller, S.H., Banerjee, P.P., Basun, S.A., Blanche, P.-A., Thomas, J., Christenson, C.W., Peyghambarian, N., Evans, D.R.: Achieving enhanced gain in photorefractive polymers by eliminating electron contributions using large bias fields. Opt. Express 21(25), 30392–30400 (2013)CrossRefGoogle Scholar
  48. 48.
    West, D., Binks, D.J.: Physics of Photorefraction in Polymers. CRC Press, Boca Raton (2005)Google Scholar
  49. 49.
    Burland, D.M., Miller, R.D., Walsh, C.A.: Second-order nonlinearity in poled-polymer systems. Chem. Rev. 94, 31–75 (1994)CrossRefGoogle Scholar
  50. 50.
    Lagendijk, A., Nienhuis, B., van Tiggelen, B., de Vries, P.: Microscopic approach to the lorentz cavity in dielectrics. Phys. Rev. Lett. 79(4), 657–660 (1997)CrossRefGoogle Scholar
  51. 51.
    Wortmann, R., Bishop, D.M.: Effective polarizabilities and local field corrections for nonlinear optical experiments in condensed media. J. Chem. Phys. 108(3), 1001–1007 (1998)CrossRefGoogle Scholar
  52. 52.
    Kippelen, B., Meyers, F., Peyghambarian, N., Marder, S.R.: Chromophore design for photorefractive applications. J. Am. Chem. Soc. 119(19), 4559–4560 (1997)CrossRefGoogle Scholar
  53. 53.
    Kogelnik, H.: Coupled wave theory for thick hologram gratings. Bell Syst. Tech. J. 48(9), 2909–2947 (1969)CrossRefGoogle Scholar
  54. 54.
    Tay, S., Blanche, P.-A., Voorakaranam, R., Tunç, A.V., Lin, W., Rokutanda, S., Gu, T., Flores, D., Wang, P., Li, G., St Hilaire, P., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: An updatable holographic three-dimensional display. Nature 451(7179), 694–698 (2008)CrossRefGoogle Scholar
  55. 55.
    Cheben, P., Del Monte, F., Worsfold, D.: A photorefractive organically modified silica glass with high optical gain. Nature 408, 64–67 (2000)CrossRefGoogle Scholar
  56. 56.
    Ostroverkhova, O., Gubler, U., Wright, D., He, M., Twieg, R.J., Moerner, W.E.: High-performance photorefractive organic glasses: understanding mechanisms and limitations. Spie 7, 4802 (2002)Google Scholar
  57. 57.
    Wiederrecht, G.: Photorefractive liquid crystals. Annu. Rev. Mater. Res. 31, 139 (2001)CrossRefGoogle Scholar
  58. 58.
    Talarico, M., Golemme, A.: Optical control of orientational bistability in photorefractive liquid crystals. Nat. Mater. 5(3), 185–188 (2006)CrossRefGoogle Scholar
  59. 59.
    Kajzar, F., Bartkiewicz, S., Miniewicz, A.: Optical amplification with high gain in hybrid-polymer–liquid-crystal structures. Appl. Phys. Lett. 74(20), 2924–2926 (2009)CrossRefGoogle Scholar
  60. 60.
    Jones, D.C., Cook, G.: Theory of beam coupling in a hybrid photorefractive-liquid crystal cell. Opt. Commun. 232(1–6), 399–409 (2004)CrossRefGoogle Scholar
  61. 61.
    Brignon, A., Bongrand, I., Loiseaux, B., Huignard, J.P.: Signal-beam amplification by two-wave mixing in a liquid-crystal light valve. Opt. Lett. 22(24), 1855–1857 (1997)CrossRefGoogle Scholar
  62. 62.
    Bidan, G.: Electroconducting conjugated polymers: new sensitive matrices to build up chemical or electrochemical sensors. A review. Sens. Actuators B Chem. 6(1–3), 45–56 (1992)CrossRefGoogle Scholar
  63. 63.
    Nalwa, H.S. (ed.): Handbook of Organic Conductive Molecules and Polymers, vol. 4. Conducti. Wiley, New York (1997)Google Scholar
  64. 64.
    Mackley, M.R.: Fundamental principles of polymeric materials. Chem. Eng. J. Biochem. Eng. J. 54(2), 109 (1994)Google Scholar
  65. 65.
    Mecher, E., Gallego-Gómez, F., Tillmann, H., Hörhold, H.-H., Hummelen, J.C., Meerholz, K.: Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination. Nature 418(6901), 959–964 (2002)CrossRefGoogle Scholar
  66. 66.
    Mecher, E., Bräuchle, C., Hörhold, H.H., Hummelen, J.C., Meerholz, K.: Comparison of new photorefractive composites based on a poly(phenylene vinylene) derivative with traditional poly(n-vinylcarbazole) composites. Phys. Chem. Chem. Phys. 1(8), 1749–1756 (1999)CrossRefGoogle Scholar
  67. 67.
    Suh, D.J., Park, O.O., Ahn, T., Shim, H.K.: Observation of the photorefractive behaviors in the polymer nanocomposite based on p-PMEH-PPV/CdSe-nanoparticle matrix. Opt. Mater. 21(1–3), 365–371 (2003)Google Scholar
  68. 68.
    Kippelen, B., Blanche, P.-A., Schülzgen, A., Fuentes-Hernandez, C., Ramos-Ortiz, G., Wang, J.-F., Peyghambarian, N., Marder, S.R., Leclercq, A., Beljonne, D., Bredas, J.L.: Photorefractive polymers with non-destructive readout. Adv. Funct. Mater. 12(9), 615–620 (2002)CrossRefGoogle Scholar
  69. 69.
    Chantharasupawong, P., Christenson, C.W., Philip, R., Zhai, L., Winiarz, J., Yamamoto, M., Tetard, L., Nair, R.R., Thomas, J.: Photorefractive performances of a graphene-doped PATPD/7-DCST/ECZ composite. J. Mater. 2(36), 7639–7647 (2014)Google Scholar
  70. 70.
    Marcus, R.A.: Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. 32(8), 1111–1121 (1993)CrossRefGoogle Scholar
  71. 71.
    Borsenberger, P.M., Fitzgerald, J.J.: Effects of the dipole moment on charge transport in disordered molecular solids. J. Phys. Chem. 97, 4815–4819 (1993)CrossRefGoogle Scholar
  72. 72.
    Dieckmann, A., Bässler, H., Borsenberger, P.M.: An assessment of the role of dipoles on the density-of-states function of disordered molecular solids. J. Chem. Phys 99(10), 8136 (1993)CrossRefGoogle Scholar
  73. 73.
    Van der Auweraer, M., Deschryver, F.C., Borsenberger, P.M., Bassler, H.: Disorder in charge-transport in doped polymers. Adv. Mater. 6(3), 199–213 (1994)CrossRefGoogle Scholar
  74. 74.
    Coropceanu, V., Brédas, J.-L.: Organic transistors: a polarized response. Nat. Mater. 5(12), 929–930 (2006)CrossRefGoogle Scholar
  75. 75.
    Li, H., Termine, R., Godbert, N., Angiolini, L., Giorgini, L., Golemme, A.: Charge photogeneration and transport in side-chain carbazole polymers and co-polymers. Org. Electron. Phys. Mater. Appl. 12(7), 1184–1191 (2011)Google Scholar
  76. 76.
    Shirota, Y., Kageyama, H.: Charge carrier transporting molecular materials and their applications in devices charge carrier transporting molecular materials and their applications in devices. Chem. Rev 107(4), 953–1010 (2007)CrossRefGoogle Scholar
  77. 77.
    Borsenberger, P.M., Weiss, D.S.: Organic Photoreceptors for Xerography. CRC Press, Boca Raton (1998)Google Scholar
  78. 78.
    Goonesekera, A., Ducharme, S.: Effect of dipolar molecules on carrier mobilities in photorefractive polymers. J. Appl. Phys 85(9), 6506 (1999)CrossRefGoogle Scholar
  79. 79.
    Lardon, M., Lell-döller, E., Weigl, J.W.: Charge transfer sensitization of some organic photoconductors based on carbazole. Mol. Cryst. 2(3), 241–266 (1967)CrossRefGoogle Scholar
  80. 80.
    Mansurova, S., Meerholz, K., Sliwinska, E., Hartwig, U., Buse, K.: Enhancement of charge carrier transport by doping PVK-based photoconductive polymers with LiNbO3 nanocrystals. Phys. Rev. B Condens. Matter Mater. Phys. 79(17), 1–7 (2009)CrossRefGoogle Scholar
  81. 81.
    Kinashi, K., Wang, Y., Sakai, W., Tsutsumi, N.: Optimization of photorefractivity based on poly(N-vinylcarbazole) composites: an approach from the perspectives of chemistry and physics. Macromol. Chem. Phys. 214(16), 1789–1797 (2013)CrossRefGoogle Scholar
  82. 82.
    Gill, W.D.: Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J. Appl. Phys. 43(12), 5033–5040 (1972)CrossRefGoogle Scholar
  83. 83.
    Diaz-Garcia, M.A., Wright, D., Casperson, J.D., Smith, B., Glazer, E., Moerner, W.E.: Photorefractive properties of poly (N-vinyl carbazole)-based composites for high-speed applications. Chem. Mater. 11(7), 1784–1791 (1999)CrossRefGoogle Scholar
  84. 84.
    Gruneisen, M., Dymale, R.: Optical vortex discrimination with a transmission volume hologram. New J. Phys. 13(8), 083030 (2011)CrossRefGoogle Scholar
  85. 85.
    Herlocker, J.A., Fuentes-Hernandez, C., Ferrio, K.B., Hendrickx, E., Blanche, P.-A., Peyghambarian, N., Kippelen, B., Zhang, Y., Wang, J.F., Marder, S.R.: Stabilization of the response time in photorefractive polymers. Appl. Phys. Lett. 77(15), 2292 (2000)CrossRefGoogle Scholar
  86. 86.
    Thomas, J., Christenson, C.W., Blanche, P.-A., Yamamoto, M., Norwood, R.A., Peyghambarian, N.: Photoconducting polymers for photorefractive 3D display applications. Chem. Mater. 23(3), 416–429 (2011)CrossRefGoogle Scholar
  87. 87.
    Chun, H., Moon, I.K., Shin, D.H., Kim, N.: Preparation of highly efficient polymeric photorefractive composite containing an isophorone-based NLO chromophore. Chem. Mater. 13(9), 2813–2817 (2001)CrossRefGoogle Scholar
  88. 88.
    Moon, I.K., Choi, C.S., Kim, N.: Synthesis and photorefractivity of polysiloxanes bearing hole-conductors doped with a nonlinear optical chromophore. Opt. Mater. 31(6), 1017–1021 (2009)CrossRefGoogle Scholar
  89. 89.
    Oh, J.W., Moon, I.K., Kim, N.: The influence of photosensitizers on the photorefractivity in poly[methyl-3-(9-carbazolyl)propylsiloxane]-based composites. J. Photochem. Photobiol. A Chem. 201(2–3), 222–227 (2009)CrossRefGoogle Scholar
  90. 90.
    Wolff, J., Schloter, S., Hofmann, U., Haarer, D., Zilker, S.J.: Speed enhancement of photorefractive polymers by means of light-induced filling of trapping states. J. Opt. Soc. Am. B 16(7), 1080 (1999)CrossRefGoogle Scholar
  91. 91.
    Kwon, O.-P., Lee, S.-H., Montemezzani, G., Günter, P.: Highly efficient photorefractive composites based on layered photoconductive polymers. J. Opt. Soc. Am. B 20(11), 2307 (2003)CrossRefGoogle Scholar
  92. 92.
    Kwon, O.P., Kwon, S.J., Jazbinsek, M., Günter, P., Lee, S.H.: Layered photoconductive polymers: anisotropic morphology and correlation with photorefractive reflection grating response. J. Chem. Phys 124(10), 104705 (2006)CrossRefGoogle Scholar
  93. 93.
    Ogino, K., Nomura, T., Shichi, T., Park, S., Sato, H.: Synthesis of polymers having tetraphenyldiaminobiphenyl units for a host polymer of photorefractive composite. Chem. Mater. 9(25), 2768–2775 (1997)CrossRefGoogle Scholar
  94. 94.
    Tsutsumi, N., Murao, T., Sakai, W.: Photorefractive response of polymeric composites with pendant triphenylamine moiety. Macromolecules 38(17), 7521–7523 (2005)CrossRefGoogle Scholar
  95. 95.
    Tsujimura, S., Kinashi, K., Sakai, W., Tsutsumi, N.: High-speed photorefractive response capability in triphenylamine polymer-based composites. Appl. Phys. Express 5(6), 064101 (2012)CrossRefGoogle Scholar
  96. 96.
    Nalwa, H.S., Miyata, S.: Nonlinear Optics of Organic Molecules and Polymers. CRC Press, Boca Raton (1996)Google Scholar
  97. 97.
    Cao, Z., Abe, Y., Nagahama, T., Tsuchiya, K., Ogino, K.: Synthesis and characterization of polytriphenylamine based graft polymers for photorefractive application. Polymer 54(1), 269–276 (2013)CrossRefGoogle Scholar
  98. 98.
    West, D.P., Rahn, M.D., Im, C., Bässler, H.: Hole transport through chromophores in a photorefractive polymer composite based on poly(N-vinylcarbazole). Chem. Phys. Lett. 326(5–6), 407–412 (2000)CrossRefGoogle Scholar
  99. 99.
    Ostroverkhova, O., Stickrath, A., Singer, K.D.: Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers. J. Appl. Phys. 91(12), 9481–9486 (2002)CrossRefGoogle Scholar
  100. 100.
    Quintana, J.A., Boj, P.G., Villalvilla, J.M., Ortíz, J., Fernández-Lázaro, F., Sastre-Santos, Á., Díaz-García, M.A.: Photorefractive properties of an unsensitized polymer composite based on a dicyanostyrene derivative as nonlinear optical chromophore. Appl. Phys. Lett. 87(26), 1–3 (2005)CrossRefGoogle Scholar
  101. 101.
    Gallego-Gómez, F., Álvarez-Santos, J.C., Rodríguez-Redondo, J.L., Font-Sanchis, E., Villalvilla, J.M., Sastre-Santos, Á., Díaz-García, M.A., Fernández-Lázaro, F.: Millisecond photorefractivity with novel dicyanomethylenedihydrofuran-containing polymers. J. Mater. Chem 22(24), 12220 (2012)CrossRefGoogle Scholar
  102. 102.
    Law, K.Y.: Organic photoconductive materials: recent trends and developments. Chem. Rev. 93(1), 449–486 (1993)CrossRefGoogle Scholar
  103. 103.
    Hendrickx, E., Kippelen, B., Thayumanavan, S., Marder, S.R., Persoons, A., Peyghambarian, N.: High photogeneration efficiency of charge-transfer complexes formed between low ionization potential arylamines and C60. J. Chem. Phys. 112(21), 9557–9561 (2000)CrossRefGoogle Scholar
  104. 104.
    Köber, S., Gallego-Gomez, F., Salvador, M., Kooistra, F.B., Hummelen, J.C., Aleman, K., Mansurova, S., Meerholz, K.: Influence of the sensitizer reduction potential on the sensitivity of photorefractive polymer composites. J. Mater. Chem. 20(29), 6170 (2010)CrossRefGoogle Scholar
  105. 105.
    Grunnet-Jepsen, A., Wright, D., Smith, B., Bratcher, M.S., DeClue, M.S., Siegel, J.S., Moerner, W.E.: Spectroscopic determination of trap density in C60 -sensitized photorefractive polymers. Chem. Phys. Lett. 291, 553–561 (1998)CrossRefGoogle Scholar
  106. 106.
    Tsutsumi, N., Kinashi, K., Nonomura, A., Sakai, W.: Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite. Materials 5(8), 1477–1486 (2012)CrossRefGoogle Scholar
  107. 107.
    Silence, S.M., Walsh, C.A., Scott, J.C., Moerner, W.E.: C60 sensitization of a photorefractive polymer. Appl. Phys. Lett. 61(25), 2967–2969 (1992)CrossRefGoogle Scholar
  108. 108.
    Orgiu, E., Samorì, P.: 25th anniversary article: organic electronics marries photochromism: generation of multifunctional interfaces, materials, and devices. Adv. Mater. 26(12), 1827–1844 (2014)CrossRefGoogle Scholar
  109. 109.
    Ditte, K., Jiang, W., Schemme, T., Denz, C., Wang, Z.: Innovative sensitizer diPBI outperforms PCBM. Adv. Mater. 24(16), 2104–2108 (2012)CrossRefGoogle Scholar
  110. 110.
    Tay, S., Thomas, J., Eralp, M., Li, G., Kippelen, B., Marder, S.R., Meredith, G., Schulzgen, A., Peyghambarian, N.: Photorefractive polymer composite operating at the optical communication wavelength of 1550 nm. Appl. Phys. Lett. 85(20), 4561 (2004)CrossRefGoogle Scholar
  111. 111.
    Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with single-wall carbon nanotubes. High Energy Chem. 43(7), 540–542 (2009)CrossRefGoogle Scholar
  112. 112.
    Vannikov, A.V., Rychwalski, R.W., Grishina, A.D., Pereshivko, L.Y., Krivenko, T.V., Savel’ev, V.V., Zolotarevski, V.I.: Photorefractive polymer composites for the IR region based on carbon nanotubes. Opt. Spectrosc. 99(4), 643–648 (2005)CrossRefGoogle Scholar
  113. 113.
    Grishina, A.D., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W., Vannikov, A.V., Grishina, A.D., Laryushkin, A.S., Krivenko, T.V., Savel’ev, V.V., Rychwalski, R.W.: Photoelectric, nonlinear optical, and photorefractive properties of polyvinylcarbazole composites with single-wall carbon nanotubes. High Energy Chem. 55(3), 540–542 (2013)Google Scholar
  114. 114.
    Galoppini, E.: Linkers for anchoring sensitizers to semiconductor nanoparticles. Coord. Chem. Rev. 248(13–14), 1283–1297 (2004)CrossRefGoogle Scholar
  115. 115.
    Anderson, N.A., Lian, T.: Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. Annu. Rev. Phys. Chem. 56(78), 491–519 (2005)CrossRefGoogle Scholar
  116. 116.
    Kramer, I.J., Sargent, E.H.: The architecture of colloidal quantum dot solar cells: materials to devices. Chem. Rev. 114(1), 863–882 (2014)CrossRefGoogle Scholar
  117. 117.
    Sargent, H., Sargent, E.H.: Colloidal quantum dot solar cells. Nat. Photon. 6(3), 133–135 (2012)CrossRefGoogle Scholar
  118. 118.
    Kamat, P.V., Tvrdy, K., Baker, D.R., Radich, J.G.: Beyond photovoltaics: semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110(11), 6664–6688 (2010)CrossRefGoogle Scholar
  119. 119.
    Talapin, D.V., Lee, J.-S., Kovalenko, M.V., Shevchenko, E.V.: Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem. Rev. 110, 389–458 (2010)CrossRefGoogle Scholar
  120. 120.
    Fuentes-Hernandez, C., Suh, D.J., Kippelen, B., Marder, S.R.: High-performance photorefractive polymers sensitized by cadmium selenide nanoparticles. Appl. Phys. Lett. 85(4), 534–536 (2004)CrossRefGoogle Scholar
  121. 121.
    Winiarz, J.G., Zhang, L., Lal, M., Friend, C.S., Prasad, P.N.: Photogeneration, charge transport, and photoconductivity of a novel PVK/CdS-nanocrystal polymer composite. Chem. Phys. 245(1–3), 417–428 (1999)CrossRefGoogle Scholar
  122. 122.
    Winiarz, J.G.: Enhancement of the photorefractive response time in a polymeric composite photosensitized with CdTe nanoparticles. J. Phys. Chem. C 111(5), 1904–1911 (2007)CrossRefGoogle Scholar
  123. 123.
    Li, X., Chon, J.W.M., Gu, M.: Nanoparticle-based photorefractive polymers. Aust. J. Chem. 61(5), 317–323 (2008)CrossRefGoogle Scholar
  124. 124.
    Binks, D.J., Bant, S.P., West, D.P., O’Brien, P., Malik, M.A.: CdSe/CdS core/shell quantum dots as sensitizer of a photorefractive polymer composite. J. Mod. Opt. 50(2), 299–310 (2003)Google Scholar
  125. 125.
    Li, X., Van Embden, J., Evans, R.A., Gu, M.: Type-II core/shell nanoparticle induced photorefractivity. Appl. Phys. Lett. 98(23), 231107 (2011)CrossRefGoogle Scholar
  126. 126.
    Zhu, J., Kim, W.J., He, G.S., Seo, J., Yong, K.T., Lee, D., Cartwright, A.N., Cui, Y., Prasad, P.N.: Enhanced photorefractivity in a polymer/nanocrystal composite photorefractive device at telecommunication wavelength. Appl. Phys. Lett. 97(26), 263108 (2010)CrossRefGoogle Scholar
  127. 127.
    Anczykowska, A., Bartkiewicz, S., Nyk, M., Myśliwiec, J.: Enhanced photorefractive effect in liquid crystal structures co-doped with semiconductor quantum dots and metallic nanoparticles. Appl. Phys. Lett. 99(19), 191109 (2011)CrossRefGoogle Scholar
  128. 128.
    Li, C., Li, X., Cao, L., Jin, G., Gu, M.: Exciton-plasmon coupling mediated photorefractivity in gold-nanoparticle- and quantum-dot-dispersed polymers. Appl. Phys. Lett. 102(25), 2011–2015 (2013)Google Scholar
  129. 129.
    Braze, C.S., Rosen, S.L.: Fundamental Principles of Polymeric Materials. Wiley, New York (2012)Google Scholar
  130. 130.
    Cheng, N., Swedek, B., Prasad, P.N.: Thermal fixing of refractive index gratings in a photorefractive polymer. Appl. Phys. Lett. 71(13), 1828–1830 (1997)CrossRefGoogle Scholar
  131. 131.
    Li, G., Wang, P., Eralp, M., Thomas, J., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Efficient local fixing of photorefractive polymer holograms using a laser beam. SPIE Proc. 6314, 631401–631401-9 (2006)CrossRefGoogle Scholar
  132. 132.
    Lv, W., Chen, Z., Gong, Q.: Improvement on the photorefractive performance by the insertion of a SiO2 blocking layer. J. Opt. A Pure Appl. Opt. 9(5), 486–489 (2007)CrossRefGoogle Scholar
  133. 133.
    Wang, P., Simavoryan, S., Lin, W., Hsieh, W.-Y., Yamamoto, M.: Photorefractive devices having sol-gel buffer layers and methods of manufacturing. US 20130321897 A1, 2013Google Scholar
  134. 134.
    Christenson, C.W.: Improving Sensitivity of Photorefractive Polymer Composites. The University of Arizona, Tucson (2011)Google Scholar
  135. 135.
    Gallego-Gomez, F., Salvador, M.: High-performance reflection gratings in photorefractive polymers. Appl. Phys. 90(25), 251113 (2007)Google Scholar
  136. 136.
    Eralp, M., Thomas, J., Tay, S., Blanche, P.A., Schülzgen, A., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Variation of Bragg condition in low-glass-transition photorefractive polymers when recorded in reflection geometry. Opt. Express 15(18), 11622 (2007)CrossRefGoogle Scholar
  137. 137.
    Stankus, J.J., Silence, S.M., Moerner, W.E., Bjorldund, G.C.: Electric-field-switchable stratified volume holograms in photorefractive polymers. Opt. Lett. 19(18), 1480–1482 (1994)CrossRefGoogle Scholar
  138. 138.
    Hayasaki, Y., Ishikura, N.: Thick photorefractive polymer device with coplanar electrodes. Rev. Sci. Instrum. 74(8), 3693 (2003)CrossRefGoogle Scholar
  139. 139.
    Christenson, C., Greenlee, C., Lynn, B., Thomas, J., Blanche, P.-A., Voorakaranam, R., Saint-Hilaire, P., LaComb, L., Norwood, R.A., Yamamoto, M., Peyghambarian, N.: Interdigitated coplanar electrodes for enhanced sensitivity in a photorefractive polymer. Opt. Lett. 36(17), 3377–3379 (2011)CrossRefGoogle Scholar
  140. 140.
    Lynn, B., Miles, A., Mehravar, S., Blanche, P.-A., Kieu, K., Norwood, R.A., Peyghambarian, N.: Real-time imaging of chromophore alignment in photorefractive polymer devices through multiphoton microscopy. MRS Commun. 5(2), 243–250 (2015)CrossRefGoogle Scholar
  141. 141.
    Däubler, T., Bittner, R., Meerholz, K., Cimrová, V., Neher, D.: Charge carrier photogeneration, trapping, and space-charge field formation in PVK-based photorefractive materials. Phys. Rev. B 61(20), 13515–13527 (2000)CrossRefGoogle Scholar
  142. 142.
    Karl, N.: Charge carrier transport in organic semiconductors. Synth. Met. 133–134, 649–657 (2003)CrossRefGoogle Scholar
  143. 143.
    Kokil, A., Yang, K., Kumar, J.: Techniques for characterization of charge carrier mobility in organic semiconductors. J. Polym. Sci. Part B Polym. Phys. 50(15), 1130–1144 (2012)CrossRefGoogle Scholar
  144. 144.
    Sienkowska, M.J., Monobe, H., Kaszynski, P., Shimizu, Y.: Photoconductivity of liquid crystalline derivatives of pyrene and carbazole. J. Mater. Chem. 17(14), 1392 (2007)CrossRefGoogle Scholar
  145. 145.
    Biaggio, I.: Holographic time of flight. In: Peled, A. (ed.) Photo-Excited Processes, Diagnostics and Applications, p. 101. Springer, New York (2004)CrossRefGoogle Scholar
  146. 146.
    Xu, J., Stickrath, A.B., Bhattacharya, P., Nees, J., Váró, G., Hillebrecht, J.R., Ren, L., Birge, R.R.: Direct measurement of the photoelectric response time of bacteriorhodopsin via electro-optic sampling. Biophys. J. 85(2), 1128–1134 (2003)CrossRefGoogle Scholar
  147. 147.
    Fujihara, T., Sassa, T., Kawada, T., Mamiya, J.I., Muto, T., Umegaki, S.: Simplified procedure for interferometric determination of electro-optic properties of low-Tg photorefractive polymer. J. Appl. Phys. 107(2), 023112–023112-5 (2010)CrossRefGoogle Scholar
  148. 148.
    Teng, C.C., Man, H.T.: Simple reflection technique for measuring the electro-optic coefficient of poled polymers. Appl. Phys. Lett. 56(18), 1734–1736 (1990)CrossRefGoogle Scholar
  149. 149.
    Sandalphon, Kippelen, B., Meerholz, K., Peyghambarian, N.: Ellipsometric measurements of poling birefringence, the Pockels effect, and the Kerr effect in high-performance photorefractive polymer composites. Appl. Opt. 35(14), 2346 (1996)CrossRefGoogle Scholar
  150. 150.
    Boyd, R.W.: Nonlinear Optics. Academic Press, San Diego (2008)Google Scholar
  151. 151.
    Walsh, C.A., Moerner, W.E.: Two-beam coupling measurements of grating phase in a photorefractive polymer. J. Opt. Soc. Am. B 9(9), 1642 (1992)CrossRefGoogle Scholar
  152. 152.
    Kawabe, Y., Fukuzawa, K., Uemura, T., Matsuura, K., Yoshikawa, T., Nishide, J., Sasabe, H.: Formation of photo-induced index grating in azo-carbazole dye-doped polymer. Proc. SPIE 8474, 84740U (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.College of Optical Sciences, University of ArizonaTucsonUSA
  2. 2.College of Optical Sciences, The University of ArizonaTucsonUSA
  3. 3.United State Navy Space and Naval Warfare Systems CommandSan DiegoUSA

Personalised recommendations