Skip to main content

Rapid Prototyping of Biomedical Microsystems for Interacting at a Cellular Level

  • Chapter
  • First Online:
Microsystems for Enhanced Control of Cell Behavior

Abstract

The applications of microsystems in the biomedical field are indeed remarkable and continuously evolving thanks to recent extraordinary progresses in the area of micromanufacturing technologies, capable of manufacturing devices with details in the typical range of 1–500 μm. As living organisms are made up with cells, whose overall dimensions typically range from 5 to 100 μm, micro-manufactured devices (with details precisely in that range) are very well-suited to interacting at a cellular level for promoting innovative diagnostic and therapeutic approaches. This chapter provides an overview of the more relevant micromanufacturing technologies with special application to the development of advanced micro-medical devices and to the manufacture of rapid prototypes, as several of these manufacturing technologies will be applied thoroughly along the Handbook for the development of different cases of study linked to microfluidic biodevices for disease modeling, to cell culture platforms for understanding cell behavior, to labs-on-chips and organs-on-chips and to tissue engineering scaffolds. The different technologies detailed in present chapter are also illustrated by means of application examples related to the aforementioned types of biomedical microdevices aimed at interacting at a cellular level. The possibility of combining technologies for the promotion of multi-scale and biomimetic approaches is also analyzed in detail and some current research challenges are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anselme K, Ponche A, Bigerelle M (2010) Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 2: biological aspects. Proc Inst Mech Eng [H]: J Eng Med 224(12):1487–1507

    Google Scholar 

  • Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1–8

    Article  Google Scholar 

  • Bartolo PJS, Almeida H, Laoui T (2009) Rapid prototyping and manufacturing for tissue engineering scaffolds. Int J Comput Appl Technol 36:1

    Article  Google Scholar 

  • Borchers K, Bierwisch C, Cousteau J, Engelhard S, Graf C, Jaeger R, Klechowitz N, Kluger P, Krueger H, Meyer W, Novosel E, Refle O, Schuh C, Seiler N, Tovar G, Wegener M, Ziegler T (2012) New cytocompatible materials for additive manufacturing of bio-inspired blood vessels systems. In: International conference on biofabrication

    Google Scholar 

  • Bückmann T, Stenger N, Kadic M, Kaschke J, Frölich A, Kennerknecht T, Eberl C, Thiel M, Wegener M (2012) Tailored 3D mechanical metamaterials made by dip-in direct-laser-writing optical lithography. Adv Mater 24:2710–2714

    Article  Google Scholar 

  • Buxboim A, Discher DE (2010) “Stem cells feel the difference. Nat Methods 7(9):695

    Article  Google Scholar 

  • Chen WL, Likhitpanichkul M, Ho A, Simmons CA (2010) Integration of statistical modeling and high-content microscopy to systematically investigate cell-substrate interactions. Biomaterials 31:2489

    Article  Google Scholar 

  • De la Guerra Ochoa E, Del Sordo Carrancio D, Echávarri Otero J, Chacón Tanarro E, Díaz Lantada A, Lafont Morgado P (2012) The influence of textured surfaces on the lubrication of artificial joint prostheses. In: Biodevices 2012—international conference on biomedical electronics and devices. IEEE engineering in medicine and biology society

    Google Scholar 

  • Díaz Lantada A (2009) Metodología para el desarrollo de dispositivos médicos basados en polímeros activos como sensores y actuadores. PhD Thesis (Advisor: P. Lafont Morgado), Universidad Politécnica de Madrid

    Google Scholar 

  • Díaz Lantada A (2012) Handbook of active materials for medical devices: advances and applications. PAN Stanford Publishing

    Google Scholar 

  • Falconer K (2003) Fractal geometry: mathematical foundations and applications. Wiley

    Google Scholar 

  • Fan H, Lu Y, Stump A, Reed ST, Baer T, Schunk R, Perez-Luna V, López GP, Brinker J (2000) Rapid prototyping of functional patterned nanostructures. Nature 405:56–60

    Article  Google Scholar 

  • Feynman RP (1992) There’s plenty of room at the bottom (data storage). J Microelectromech Syst 1(1):60–66. doi:10.1109/84.128057

    Google Scholar 

  • Feynman RP (1993) Infinitesimal machinery. J Microelectromech Syst 2(1):4–14. doi:10.1109/84.232589

    Article  MathSciNet  Google Scholar 

  • Gad-el-Hak. (2003) The MEMS handbook. CRC Press, New York

    MATH  Google Scholar 

  • Hengsbach S, Díaz Lantada A (2014a) Direct laser writing of auxetic structures: Present capabilities and challenges. Smart Mater Struct 23:085033

    Article  Google Scholar 

  • Hengsbach S, Díaz Lantada A (2014b) Rapid prototyping of multi-scale biomedical microdevices by combining additive manufacturing technologies. Biomed Microdevices 16(4):617–627

    Article  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Tian F, Kobayashi H, Tabata Y (2007) Bone regeneration on a collagen sponge self-assembled peptide-amphiphile nanofiber hybrid scaffold. Tissue Eng 13(1):11–19

    Article  Google Scholar 

  • Hosseinkhani H, Hosseinkhani M, Hattori S, Matsuoka R, Kawaguchi N (2010) Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res, Part A 94(1):1–8

    Article  Google Scholar 

  • Ikuta K, Hirowatari K (1993) Real three dimensional microfabrication using stereo lithography and metal molding. In: Proceedings of the IEEE international workshop on micro electro mechanical system (MEMS 93), pp 42–47

    Google Scholar 

  • Infür R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J (2007) Functional polymers by two-photon 3D lithography. Appl Surf Sci 254:836–840

    Article  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920

    Article  Google Scholar 

  • Lorenzo-Yustos H (2008) Aplicación de nuevas tecnologías en la realización de herramientas para moldes de inyección de termoplásticos”. PhD Thesis (Advisor: P. Lafont Morgado), Universidad Politécnica de Madrid

    Google Scholar 

  • Madou MJ (2002) Fundamentals of microfabrication: the science of miniaturization, 2nd edn. CRC Press

    Google Scholar 

  • Maluf N (2000) An introduction to micro-electromechanical systems engineering. Artech House

    Google Scholar 

  • Mandelbrot B (1982) The fractal geometry of nature. W.H. Freeman, San Francisco

    Google Scholar 

  • Masood SH, Singh JP, Morsi Y (2005) The design and manufacturing of porous scaffolds for tissue engineering using rapid prototyping. Int J Adv Manufact Technol 27:415–420

    Article  Google Scholar 

  • Mironov V, Trusk T, Kasyanov V, Little S, Swaja R, Markwald R (2009) Biofabrication: a 21st century manufacturing paradigm. Biofabrication 1(2):022001

    Article  Google Scholar 

  • Ostendorf A, Chichkov BN (2006) Two-photon polymerization: a new approach to micromachining. In: Photonics Spectra, October, 2006

    Google Scholar 

  • Place ES, Evans N, Stevens M (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–469

    Article  Google Scholar 

  • Ponche A, Bigerelle M, Anselme K (2010) Relative influence of surface topography and surface chemistry on ell response to bone implant materials. Part 1: physico-chemical effects. Proc Inst Mech Eng [H]: J Eng Med 224(12):1471–1486

    Google Scholar 

  • Queste S, Salut R, Clatot S, Rauch JY, Khan Malek CG (2010) Manufacture of microfluidic glass chips by deep plasma etching, femtosecond laser ablation, and anodic bonding. Microsyst Technol 16(8–9):1485–1493

    Article  Google Scholar 

  • Reljin IS, Reljin BD (2002) Fractal geometry and multifractals in analyzing and processing medical data and images. Arch Oncol 10(4):283–293

    Article  MATH  Google Scholar 

  • Röhrig M, Thiel M, Worgull M, Hölscher H (2012) Hierarchical structures: 3D direct laser writing of nano-microstructured hierarchical gecko-mimicking surface. Small 8(19):3009–3015

    Article  Google Scholar 

  • Schwentenwein M, Homa J (2015) Additive manufacture of dense alumina ceramics. Appl Ceram Technol 12(1):1–7

    Article  Google Scholar 

  • Shuler ML (2012) Modeling life. Ann Biomed Eng 40(7):1399–1407

    Article  Google Scholar 

  • Sin A, Chin KC, Jamil MF, Kostov Y, Rao G, Shuler ML (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20:338–345

    Article  Google Scholar 

  • Tan JY, Chua CK, Leong KF (2010) Indirect fabrication of gelatin scaffolds using rapid prototyping technology. Virtual Phys Prototyping 5(1):45

    Article  Google Scholar 

  • Thomas WE, Discher DE, Shastri VP (2010) Mechanical regulation of cells by materials and tissues. MRS Bull 35:578

    Article  Google Scholar 

  • Varadan VK, Jiang X, Varadan VV (2001) Microstereolithography and other fabrication techniques for 3D MEMS. Wiley

    Google Scholar 

  • Wohlers T (2010) Wohlers’ report: additive manufacturing state of the industry. Wohlers Associattes

    Google Scholar 

  • Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the support of the Karlsruhe Nano Micro Facility (KNMF, http://www.knmf.kit.edu/) a Helmholtz research infrastructure at the Karlsruhe Institute of Technology (KIT). Proposal KNMF-2013-010001542 (muFractal: Microsystem for studying the influence of fractal dimension on cell behaviour), linked to the rapid manufacture of microtextured microsystems, proposal KNMF-2013-010001541 (NanoAUX: Additive nanomanufacture of 3D auxetic metamaterials), linked to the nano-manufacture of auxetic metamaterials, and proposal KNMF-2012-009001145 (Replic-AS: Replication of advanced scaffolds with biomimetric fractal features), linked to replicating the presented multi-channelled microsystem with fractal channels, and the co-authors and their teams that made them possible are acknowledged. We acknowledge the support of the “Tomax: Tool-less manufacture of complex geometries” project, funded by the European Union Commission under grant nº: 633192 - H2020-FoF-2014-2015/H2020-FoF-2014 and led by Prof. Dr. Jürgen Stampfl from the Technical University of Vienna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Díaz Lantada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Díaz Lantada, A., Resnick, J., Mousa, J., de Alba, M.Á., Hengsbach, S., Ramos Gómez, M. (2016). Rapid Prototyping of Biomedical Microsystems for Interacting at a Cellular Level. In: Díaz Lantada, A. (eds) Microsystems for Enhanced Control of Cell Behavior. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 18. Springer, Cham. https://doi.org/10.1007/978-3-319-29328-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-29328-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-29326-4

  • Online ISBN: 978-3-319-29328-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics